論文の概要: Conversational Text Extraction with Large Language Models Using Retrieval-Augmented Systems
- arxiv url: http://arxiv.org/abs/2501.09801v1
- Date: Thu, 16 Jan 2025 19:12:25 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-20 14:00:15.415173
- Title: Conversational Text Extraction with Large Language Models Using Retrieval-Augmented Systems
- Title(参考訳): 検索拡張システムを用いた大規模言語モデルによる会話テキストの抽出
- Authors: Soham Roy, Mitul Goswami, Nisharg Nargund, Suneeta Mohanty, Prasant Kumar Pattnaik,
- Abstract要約: 本研究では,Large Language Models (LLMs) を利用した対話インタフェースを用いてPDF文書からテキストを抽出するシステムを提案する。
このシステムは、PDF内の関連するパスをハイライトしながら、ユーザからの問い合わせに対して情報的応答を提供する。
提案システムは,既存のテキスト抽出・要約技術と比較して,競争力のあるROUGE値を提供する。
- 参考スコア(独自算出の注目度): 0.20971479389679337
- License:
- Abstract: This study introduces a system leveraging Large Language Models (LLMs) to extract text and enhance user interaction with PDF documents via a conversational interface. Utilizing Retrieval-Augmented Generation (RAG), the system provides informative responses to user inquiries while highlighting relevant passages within the PDF. Upon user upload, the system processes the PDF, employing sentence embeddings to create a document-specific vector store. This vector store enables efficient retrieval of pertinent sections in response to user queries. The LLM then engages in a conversational exchange, using the retrieved information to extract text and generate comprehensive, contextually aware answers. While our approach demonstrates competitive ROUGE values compared to existing state-of-the-art techniques for text extraction and summarization, we acknowledge that further qualitative evaluation is necessary to fully assess its effectiveness in real-world applications. The proposed system gives competitive ROUGE values as compared to existing state-of-the-art techniques for text extraction and summarization, thus offering a valuable tool for researchers, students, and anyone seeking to efficiently extract knowledge and gain insights from documents through an intuitive question-answering interface.
- Abstract(参考訳): 本研究では,Large Language Models (LLMs) を利用してテキストを抽出し,対話インタフェースを用いてPDF文書との対話性を高めるシステムを提案する。
Retrieval-Augmented Generation (RAG) を利用して、PDF内の関連するパスをハイライトしながら、ユーザからの問い合わせに情報を提供する。
ユーザがアップロードすると、PDFが処理され、文書固有のベクトルストアが作成される。
本発明のベクターストアは、ユーザクエリに応じて、関連するセクションの効率的な検索を可能にする。
LLMはその後、検索された情報を用いて会話の交換を行い、テキストを抽出し、包括的で文脈的に認識された回答を生成する。
提案手法は,既存のテキスト抽出・要約技術と比較して,競争力のあるROUGE値を示すものであるが,実世界のアプリケーションにおいて,その効果を十分に評価するためには,さらなる質的評価が必要であることを認めている。
提案システムは,既存のテキスト抽出・要約技術と比較して,競争力のあるROUGE値を提供する。
関連論文リスト
- Enhancing Multimodal Query Representation via Visual Dialogues for End-to-End Knowledge Retrieval [26.585985828583304]
本稿では,マルチモーダルクエリを理解可能なテキスト検索機能を実現するために,エンドツーエンドのマルチモーダル検索システムRet-XKnowを提案する。
マルチモーダルインタラクションを効果的に学習するために、視覚対話データセットから構築したVisual Dialogue-to-Retrievalデータセットも導入する。
提案手法は,ゼロショット設定における検索性能を大幅に向上するだけでなく,微調整シナリオの大幅な改善も達成できることを示す。
論文 参考訳(メタデータ) (2024-11-13T04:32:58Z) - ProCIS: A Benchmark for Proactive Retrieval in Conversations [21.23826888841565]
本稿では,280万件以上の会話からなるプロアクティブな文書検索のための大規模データセットを提案する。
クラウドソーシング実験を行い、高品質で比較的完全な妥当性判定を行う。
また、各文書に関連する会話部分に関するアノテーションを収集し、前向きな検索システムの評価を可能にする。
論文 参考訳(メタデータ) (2024-05-10T13:11:07Z) - LEARN: Knowledge Adaptation from Large Language Model to Recommendation for Practical Industrial Application [54.984348122105516]
Llm-driven knowlEdge Adaptive RecommeNdation (LEARN)フレームワークは、オープンワールドの知識と協調的な知識をシナジする。
オープンワールドの知識と協調的な知識を相乗化するLlm-driven knowlEdge Adaptive RecommeNdation (LEARN) フレームワークを提案する。
論文 参考訳(メタデータ) (2024-05-07T04:00:30Z) - Knowledge Graphs and Pre-trained Language Models enhanced Representation Learning for Conversational Recommender Systems [58.561904356651276]
本稿では,対話型推薦システムのためのエンティティの意味理解を改善するために,知識強化型エンティティ表現学習(KERL)フレームワークを紹介する。
KERLは知識グラフと事前訓練された言語モデルを使用して、エンティティの意味的理解を改善する。
KERLはレコメンデーションとレスポンス生成の両方のタスクで最先端の結果を達成する。
論文 参考訳(メタデータ) (2023-12-18T06:41:23Z) - QuOTeS: Query-Oriented Technical Summarization [0.2936007114555107]
提案するQuOTeSは,潜在的参照の集合から研究の要約に関連する文章を検索するインタラクティブシステムである。
QuOTeS は Query-Focused Extractive Summarization と High-Recall Information Retrieval の技法を統合し、科学文書のインタラクティブなクエリ-Focused Summarization を提供する。
結果から,QuOTeSは肯定的なユーザエクスペリエンスを提供し,関連する,簡潔かつ完全なクエリ中心の要約を一貫して提供することが明らかになった。
論文 参考訳(メタデータ) (2023-06-20T18:43:24Z) - TextFormer: A Query-based End-to-End Text Spotter with Mixed Supervision [61.186488081379]
Transformerアーキテクチャを用いた問合せベースのエンドツーエンドテキストスポッターであるTextFormerを提案する。
TextFormerは、画像エンコーダとテキストデコーダの上に構築され、マルチタスクモデリングのための共同セマンティック理解を学ぶ。
分類、セグメンテーション、認識のブランチの相互訓練と最適化を可能にし、より深い特徴共有をもたらす。
論文 参考訳(メタデータ) (2023-06-06T03:37:41Z) - Coarse-to-Fine Knowledge Selection for Document Grounded Dialogs [11.63334863772068]
マルチドキュメント基盤対話システム(DGDS)は,文書の集合から支援された知識を見出すことで,ユーザの要求に答える。
本稿では,粒度の粗い知識検索と粒度の細かい知識抽出の両方を統一されたフレームワークで最適化することを目的としたRe3Gを提案する。
論文 参考訳(メタデータ) (2023-02-23T08:28:29Z) - Generate rather than Retrieve: Large Language Models are Strong Context
Generators [74.87021992611672]
本稿では,文書検索を大規模言語モデル生成器に置き換えることで,知識集約型タスクを解く新しい視点を提案する。
我々は,提案手法をgenRead (genRead) と呼び,まず大きな言語モデルに対して,与えられた質問に基づいて文脈文書を生成し,次に生成された文書を読み出して最終回答を生成する。
論文 参考訳(メタデータ) (2022-09-21T01:30:59Z) - Layout-Aware Information Extraction for Document-Grounded Dialogue:
Dataset, Method and Demonstration [75.47708732473586]
視覚的にリッチな文書から構造的知識と意味的知識の両方を抽出するためのレイアウト対応文書レベル情報抽出データセット(LIE)を提案する。
LIEには製品および公式文書の4,061ページから3つの抽出タスクの62kアノテーションが含まれている。
実験の結果、レイアウトはVRDベースの抽出に不可欠であることが示され、システムデモでは、抽出された知識が、ユーザが関心を持っている答えを見つけるのに役立つことも確認されている。
論文 参考訳(メタデータ) (2022-07-14T07:59:45Z) - iFacetSum: Coreference-based Interactive Faceted Summarization for
Multi-Document Exploration [63.272359227081836]
iFacetSumは、インタラクティブな要約と顔検索を統合している。
微粒なファセットは、クロスドキュメントのコア参照パイプラインに基づいて自動的に生成される。
論文 参考訳(メタデータ) (2021-09-23T20:01:11Z) - Natural language processing for word sense disambiguation and
information extraction [0.0]
Thesaurus を用いた Word Sense Disambiguation の新しいアプローチを提案する。
ファジィ論理に基づく文書検索手法について解説し,その応用例を示した。
この戦略は、明らかな推論のデンプスター・シェーファー理論に基づく新しい戦略の提示で締めくくられる。
論文 参考訳(メタデータ) (2020-04-05T17:13:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。