Ultra-sensitive separation estimation of optical sources
- URL: http://arxiv.org/abs/2306.11916v1
- Date: Tue, 20 Jun 2023 22:05:06 GMT
- Title: Ultra-sensitive separation estimation of optical sources
- Authors: Cl\'ementine Rouvi\`ere, David Barral, Antonin Grateau, Ilya
Karuseichyk, Giacomo Sorelli, Mattia Walschaers, and Nicolas Treps
- Abstract summary: We implement a quantum-metrolgy-inspired approach for estimating the separation between two incoherent sources.
We demonstrate the remarkable effectiveness of demultiplexing for sub-Rayleigh separation estimation.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Historically, the resolution of optical imaging systems was dictated by
diffraction, and the Rayleigh criterion was long considered an unsurpassable
limit. In superresolution microscopy, this limit is overcome by manipulating
the emission properties of the object. However, in passive imaging, when
sources are uncontrolled, reaching sub-Rayleigh resolution remains a challenge.
Here, we implement a quantum-metrolgy-inspired approach for estimating the
separation between two incoherent sources, achieving a sensitivity five orders
of magnitude beyond the Rayleigh limit. Using a spatial mode demultiplexer, we
examine scenes with bright and faint sources, through intensity measurements in
the Hermite-Gauss basis. Analysing sensitivity and accuracy over an extensive
range of separations, we demonstrate the remarkable effectiveness of
demultiplexing for sub-Rayleigh separation estimation. These results
effectively render the Rayleigh limit obsolete for passive imaging.
Related papers
- A superresolution-enhanced spectrometer beyond the Cramer-Rao bound in phase sensitivity [0.0]
Coherence technique of superresolution has been introduced to overcome the diffraction limit in phase sensitivity.
Here, the superresolution is adopted for precision metrology in an optical spectrometer, whose enhanced frequency resolution is linearly proportional to the intensity-product order.
Unlike quantum sensing using entangled photons, this technique is purely classical and offers robust performance against environmental noises.
arXiv Detail & Related papers (2024-09-01T07:30:31Z) - Exploiting separation-dependent coherence to boost optical resolution [0.0]
We resolve two thermal sources sharing arbitrary mutual coherence using the spatial mode demultiplexing technique.
Our analytical study includes scenarios where the coherence and the emission rate depend on the separation between the sources, and is not limited to the faint sources limit.
arXiv Detail & Related papers (2024-01-24T16:18:29Z) - NeISF: Neural Incident Stokes Field for Geometry and Material Estimation [50.588983686271284]
Multi-view inverse rendering is the problem of estimating the scene parameters such as shapes, materials, or illuminations from a sequence of images captured under different viewpoints.
We propose Neural Incident Stokes Fields (NeISF), a multi-view inverse framework that reduces ambiguities using polarization cues.
arXiv Detail & Related papers (2023-11-22T06:28:30Z) - Optimal baseline exploitation in vertical dark-matter detectors based on
atom interferometry [50.06952271801328]
Several terrestrial detectors for gravitational waves and dark matter based on long-baseline atom interferometry are currently in the final planning stages or already under construction.
We show that resonant-mode detectors based on multi-diamond fountain gradiometers achieve the optimal, shot-noise limited, sensitivity if their height constitutes 20% of the available baseline.
arXiv Detail & Related papers (2023-09-08T08:38:24Z) - Passive superresolution imaging of incoherent objects [63.942632088208505]
Method consists of measuring the field's spatial mode components in the image plane in the overcomplete basis of Hermite-Gaussian modes and their superpositions.
Deep neural network is used to reconstruct the object from these measurements.
arXiv Detail & Related papers (2023-04-19T15:53:09Z) - Super-resolution enhancement in bi-photon spatial mode demultiplexin [0.0]
Imaging systems measuring intensity in the far field succumb to Rayleigh's curse, a resolution limitation dictated by the finite aperture of the optical system.
Many proof-of-principle and some two-dimensional imaging experiments have shown that, by using spatial mode demultiplexing (SPADE), the field information collected is maximal.
arXiv Detail & Related papers (2022-12-20T17:40:46Z) - Moment-based superresolution: Formalism and applications [0.0]
We introduce a simple superresolution protocol to estimate the separation between two thermal sources.
We show how optimal observables for this technique may be constructed for arbitrary thermal sources.
We also investigate the impact of noise on the optimal observables, their measurement sensitivity and on the scaling with the number of detected photons of the smallest resolvable separation.
arXiv Detail & Related papers (2021-05-26T08:48:28Z) - Superresolution in interferometric imaging of strong thermal sources [12.758461478708252]
We consider the fundamental quantum limit of resolving the transverse separation of two strong thermal point sources using interferometer arrays.
We propose measurement techniques using linear beam splitters and photon-number-resolving detection to achieve our bound.
arXiv Detail & Related papers (2020-12-27T22:49:50Z) - Correlation Plenoptic Imaging between Arbitrary Planes [52.77024349608834]
We show that the protocol enables to change the focused planes, in post-processing, and to achieve an unprecedented combination of image resolution and depth of field.
Results lead the way towards the development of compact designs for correlation plenoptic imaging devices based on chaotic light, as well as high-SNR plenoptic imaging devices based on entangled photon illumination.
arXiv Detail & Related papers (2020-07-23T14:26:14Z) - Quantum metamaterial for nondestructive microwave photon counting [52.77024349608834]
We introduce a single-photon detector design operating in the microwave domain based on a weakly nonlinear metamaterial.
We show that the single-photon detection fidelity increases with the length of the metamaterial to approach one at experimentally realistic lengths.
In stark contrast to conventional photon detectors operating in the optical domain, the photon is not destroyed by the detection and the photon wavepacket is minimally disturbed.
arXiv Detail & Related papers (2020-05-13T18:00:03Z) - Hyperspectral-Multispectral Image Fusion with Weighted LASSO [68.04032419397677]
We propose an approach for fusing hyperspectral and multispectral images to provide high-quality hyperspectral output.
We demonstrate that the proposed sparse fusion and reconstruction provides quantitatively superior results when compared to existing methods on publicly available images.
arXiv Detail & Related papers (2020-03-15T23:07:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.