A superresolution-enhanced spectrometer beyond the Cramer-Rao bound in phase sensitivity
- URL: http://arxiv.org/abs/2409.00642v1
- Date: Sun, 1 Sep 2024 07:30:31 GMT
- Title: A superresolution-enhanced spectrometer beyond the Cramer-Rao bound in phase sensitivity
- Authors: Byoung S. Ham,
- Abstract summary: Coherence technique of superresolution has been introduced to overcome the diffraction limit in phase sensitivity.
Here, the superresolution is adopted for precision metrology in an optical spectrometer, whose enhanced frequency resolution is linearly proportional to the intensity-product order.
Unlike quantum sensing using entangled photons, this technique is purely classical and offers robust performance against environmental noises.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Precision measurement has been an important research area in sensing and metrology. In classical physics, the Fisher information determines the maximum extractable information from statistically unknown signals, based on a joint probability density function of independently and identically distributed random variables. The Cramer-Rao lower bound (CRLB) indicates the minimum error of the Fisher information, generally known as the shot-noise limit. On the other hand, coherence has pushed the resolution limit further overcoming the diffraction limit using many-wave interference strictly confined to the first-order intensity correlation. However, practical implementation is limited by the lithographic constraints in, e.g., optical gratings. Recently, a coherence technique of superresolution has been introduced to overcome the diffraction limit in phase sensitivity using higher-order intensity correlations of a phase-controlled output field from an interferometer. Here, the superresolution is adopted for precision metrology in an optical spectrometer, whose enhanced frequency resolution is linearly proportional to the intensity-product order, overcoming CRLB. Unlike quantum sensing using entangled photons, this technique is purely classical and offers robust performance against environmental noises, benefiting from the interferometer scanning mode for fringe counting.
Related papers
- X-ray Phase Measurements by Time-Energy Correlated Photon Pairs [0.0]
We demonstrate a novel X-ray interferometric method of phase measurement with enhanced immunity to various types of noise.
We use a monolithic silicon perfect crystal device with two thin lamellae to generate correlated photon pairs via spontaneous parametric down-conversion.
arXiv Detail & Related papers (2024-11-19T18:14:56Z) - Coherence spectroscopy by the Nth power of the measured signal in an interferometer overcoming the diffraction limit [0.0]
Coherence spectroscopy has been intensively studied over the last several decades for various applications in science and engineering.
Here, the Kth power of the measured signal in an N-slit interferometer is studied for enhanced coherence spectroscopy to overcome the resolution limit of the original system.
The Kth power of the intensity beats the resolution limit of the N-slit interferometer, in which the out-of-shelf spectrometer or wavelength meter can be a primary beneficiary.
arXiv Detail & Related papers (2024-05-21T04:04:52Z) - Resolution Limit of Single-Photon LiDAR [9.288380569562678]
Given a fixed amount of flux produced by the laser transmitter across the scene, the per-pixel Signal-to-Noise Ratio (SNR) will decrease when more pixels are packed in a unit space.
This presents a fundamental trade-off between the spatial resolution of the sensor array and the SNR received at each pixel.
arXiv Detail & Related papers (2024-03-25T05:21:26Z) - Intensity product-based optical sensing to beat the diffraction limit in an interferometer [0.0]
In a typical interferometer, the resolution remains in the diffraction limit of the K=1 case unless the interfering photons are resolved as in quantum sensing.
Here, a projection-measurement method in quantum sensing is adapted for an interferometer to achieve an additional square root K gain in resolution.
For the projection measurement, the interference fringe of an interferometer can be Kth-powered to replace the Kth-order intensity product.
arXiv Detail & Related papers (2024-03-19T03:42:45Z) - Optimal baseline exploitation in vertical dark-matter detectors based on
atom interferometry [50.06952271801328]
Several terrestrial detectors for gravitational waves and dark matter based on long-baseline atom interferometry are currently in the final planning stages or already under construction.
We show that resonant-mode detectors based on multi-diamond fountain gradiometers achieve the optimal, shot-noise limited, sensitivity if their height constitutes 20% of the available baseline.
arXiv Detail & Related papers (2023-09-08T08:38:24Z) - Digital noise spectroscopy with a quantum sensor [57.53000001488777]
We introduce and experimentally demonstrate a quantum sensing protocol to sample and reconstruct the auto-correlation of a noise process.
Walsh noise spectroscopy method exploits simple sequences of spin-flip pulses to generate a complete basis of digital filters.
We experimentally reconstruct the auto-correlation function of the effective magnetic field produced by the nuclear-spin bath on the electronic spin of a single nitrogen-vacancy center in diamond.
arXiv Detail & Related papers (2022-12-19T02:19:35Z) - Large-momentum-transfer atom interferometers with $\mu$rad-accuracy
using Bragg diffraction [0.0]
LMT atom interferometers using elastic Bragg scattering on light waves are among the most precise quantum sensors to date.
We develop an analytic model for the interferometer signal and demonstrate its accuracy using comprehensive numerical simulations.
arXiv Detail & Related papers (2022-08-13T13:31:29Z) - Two-colour spectrally multimode integrated SU(1,1) interferometer [77.34726150561087]
We develop and investigate an integrated multimode two-colour SU (1,1) interferometer that operates in a supersensitive mode.
By ensuring a proper design of the integrated platform, we suppress dispersion and thereby significantly increase the visibility of the interference pattern.
We demonstrate that such an interferometer overcomes the classical phase sensitivity limit for wide parametric gain ranges, when up to $3*104$ photons are generated.
arXiv Detail & Related papers (2022-02-10T13:30:42Z) - Quantifying n-photon indistinguishability with a cyclic integrated
interferometer [40.24757332810004]
We report on a universal method to measure the genuine indistinguishability of n-photons.
Our approach relies on a low-depth cyclic multiport interferometer with N = 2n modes.
We experimentally demonstrate this technique for a 8-mode integrated interferometer fabricated using femtosecond laser micromachining.
arXiv Detail & Related papers (2022-01-31T16:30:52Z) - Investigation and comparison of measurement schemes in the low frequency
biosensing regime using solid-state defect centers [58.720142291102135]
Solid state defects in diamond make promising quantum sensors with high sensitivity andtemporal resolution.
Inhomogeneous broadening and drive amplitude variations have differing impacts on the sensitivity depending on the sensing scheme used.
We numerically investigate and compare the predicted sensitivity of schemes based on continuous-wave (CW) optically detected magnetic resonance (ODMR) spectroscopy, pi-pulse ODMR and Ramsey interferometry.
arXiv Detail & Related papers (2021-09-27T13:05:23Z) - Spectrally multimode integrated SU(1,1) interferometer [50.591267188664666]
The presented interferometer includes a polarization converter between two photon sources and utilizes a continuous-wave (CW) pump.
We show that this configuration results in almost perfect destructive interference at the output and supersensitivity regions below the classical limit.
arXiv Detail & Related papers (2020-12-07T14:42:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.