論文の概要: Pick the Best Pre-trained Model: Towards Transferability Estimation for
Medical Image Segmentation
- arxiv url: http://arxiv.org/abs/2307.11958v1
- Date: Sat, 22 Jul 2023 01:58:18 GMT
- ステータス: 処理完了
- システム内更新日: 2023-07-25 18:48:35.200655
- Title: Pick the Best Pre-trained Model: Towards Transferability Estimation for
Medical Image Segmentation
- Title(参考訳): 最高の事前訓練モデルを選ぶ:医用画像セグメンテーションの伝達可能性推定に向けて
- Authors: Yuncheng Yang, Meng Wei, Junjun He, Jie Yang, Jin Ye, Yun Gu
- Abstract要約: 転送学習は、難しい医用画像分割タスクのために、ディープニューラルネットワークをトレーニングする上で重要なテクニックである。
医用画像セグメンテーションのための新しい転送可能性推定法を提案する。
医用画像のセグメンテーションにおける転送可能性推定のアルゴリズムを網羅した手法を提案する。
- 参考スコア(独自算出の注目度): 20.03177073703528
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Transfer learning is a critical technique in training deep neural networks
for the challenging medical image segmentation task that requires enormous
resources. With the abundance of medical image data, many research institutions
release models trained on various datasets that can form a huge pool of
candidate source models to choose from. Hence, it's vital to estimate the
source models' transferability (i.e., the ability to generalize across
different downstream tasks) for proper and efficient model reuse. To make up
for its deficiency when applying transfer learning to medical image
segmentation, in this paper, we therefore propose a new Transferability
Estimation (TE) method. We first analyze the drawbacks of using the existing TE
algorithms for medical image segmentation and then design a source-free TE
framework that considers both class consistency and feature variety for better
estimation. Extensive experiments show that our method surpasses all current
algorithms for transferability estimation in medical image segmentation. Code
is available at https://github.com/EndoluminalSurgicalVision-IMR/CCFV
- Abstract(参考訳): トランスファー学習は、膨大なリソースを必要とする医用画像分割タスクのために深層ニューラルネットワークを訓練するための重要な技術である。
医療画像データが豊富にあるため、多くの研究機関は様々なデータセットでトレーニングされたモデルをリリースし、候補となるソースモデルの巨大なプールを形成できる。
したがって、適切なモデル再利用のために、ソースモデルの転送可能性(すなわち、異なる下流タスクをまたいで一般化する能力)を見積もることが不可欠である。
そこで本稿では,医療画像分割に転送学習を適用する際にその不足を補うために,新しい転送可能性推定法を提案する。
まず,既存のteアルゴリズムを用いた医用画像セグメンテーションの欠点を分析した上で,クラス一貫性と特徴量の両方を考慮したソースフリーなteフレームワークを設計した。
広範な実験により,本手法は医用画像分割におけるトランスファビリティ推定の現在のアルゴリズムを超越することを示した。
コードはhttps://github.com/EndoluminalSurgicalVision-IMR/CCFVで公開されている。
関連論文リスト
- From CNN to Transformer: A Review of Medical Image Segmentation Models [7.3150850275578145]
医用画像セグメンテーションのための深層学習が主流となっている。
本稿では,近年最も代表的な4つの医用画像セグメンテーションモデルについて調査する。
理論的にこれらのモデルの特徴を解析し、2つのベンチマークデータセット上でそれらの性能を定量的に評価する。
論文 参考訳(メタデータ) (2023-08-10T02:48:57Z) - LVM-Med: Learning Large-Scale Self-Supervised Vision Models for Medical
Imaging via Second-order Graph Matching [59.01894976615714]
LVM-Medは、大規模医療データセットに基づいてトレーニングされた、最初のディープネットワークファミリーである。
55の公開データセットから約13万の医療画像を収集しました。
LVM-Medは、多くの最先端の教師付き、自己監督型、基礎モデルよりも経験的に優れている。
論文 参考訳(メタデータ) (2023-06-20T22:21:34Z) - Learnable Weight Initialization for Volumetric Medical Image Segmentation [66.3030435676252]
本稿では,学習可能な重みに基づくハイブリッド医療画像セグメンテーション手法を提案する。
我々のアプローチはどんなハイブリッドモデルにも簡単に統合でき、外部のトレーニングデータを必要としない。
多臓器・肺がんセグメンテーションタスクの実験は、我々のアプローチの有効性を実証している。
論文 参考訳(メタデータ) (2023-06-15T17:55:05Z) - Domain Generalization for Mammographic Image Analysis with Contrastive
Learning [62.25104935889111]
効果的なディープラーニングモデルのトレーニングには、さまざまなスタイルと品質を備えた大規模なデータが必要である。
より優れたスタイルの一般化能力を備えた深層学習モデルを実現するために,新しいコントラスト学習法が開発された。
提案手法は,様々なベンダスタイルドメインのマンモグラムや,いくつかのパブリックデータセットを用いて,広範囲かつ厳密に評価されている。
論文 参考訳(メタデータ) (2023-04-20T11:40:21Z) - Pre-text Representation Transfer for Deep Learning with Limited
Imbalanced Data : Application to CT-based COVID-19 Detection [18.72489078928417]
我々は、PRT(Pre-text Representation Transfer)という新しい概念を提案する。
PRTは元の分類層を保持し、教師なしのプレテキストタスクを通じて表現層を更新する。
提案手法により,従来の移動学習よりも一貫した効果が得られた。
論文 参考訳(メタデータ) (2023-01-21T04:47:35Z) - A Systematic Benchmarking Analysis of Transfer Learning for Medical
Image Analysis [7.339428207644444]
我々は,最新の大規模きめ細かいデータセットであるiNat2021で事前訓練されたモデルの転送可能性について,系統的研究を行った。
本稿では,医用画像上のイメージネットモデルを継続的に(事前学習)することにより,自然画像と医用画像の領域ギャップを埋める実践的アプローチを提案する。
論文 参考訳(メタデータ) (2021-08-12T19:08:34Z) - A Multi-Stage Attentive Transfer Learning Framework for Improving
COVID-19 Diagnosis [49.3704402041314]
新型コロナの診断を改善するための多段階集中移動学習フレームワークを提案する。
提案するフレームワークは、複数のソースタスクと異なるドメインのデータから知識を学習し、正確な診断モデルを訓練する3つの段階からなる。
本稿では,肺CT画像のマルチスケール表現を学習するための自己教師付き学習手法を提案する。
論文 参考訳(メタデータ) (2021-01-14T01:39:19Z) - Generative Adversarial U-Net for Domain-free Medical Image Augmentation [49.72048151146307]
注釈付き医用画像の不足は、医用画像コンピューティングの分野における最大の課題の1つだ。
本稿では,生成逆U-Netという新しい生成手法を提案する。
当社の新しいモデルは、ドメインフリーで、さまざまな医療画像に汎用性があります。
論文 参考訳(メタデータ) (2021-01-12T23:02:26Z) - Domain Generalization for Medical Imaging Classification with
Linear-Dependency Regularization [59.5104563755095]
本稿では,医用画像分類分野におけるディープニューラルネットワークの一般化能力向上のための,シンプルだが効果的なアプローチを提案する。
医用画像の領域変数がある程度コンパクトであることに感銘を受けて,変分符号化による代表的特徴空間の学習を提案する。
論文 参考訳(メタデータ) (2020-09-27T12:30:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。