Winter Wheat Crop Yield Prediction on Multiple Heterogeneous Datasets
using Machine Learning
- URL: http://arxiv.org/abs/2306.11946v1
- Date: Tue, 20 Jun 2023 23:52:39 GMT
- Title: Winter Wheat Crop Yield Prediction on Multiple Heterogeneous Datasets
using Machine Learning
- Authors: Yogesh Bansal, Dr. David Lillis, Prof. Mohand Tahar Kechadi
- Abstract summary: Winter wheat is one of the most important crops in the United Kingdom, and crop yield prediction is essential for the nation's food security.
Several studies have employed machine learning (ML) techniques to predict crop yield on a county or farm-based level.
The main objective of this study is to predict winter wheat crop yield using ML models on multiple heterogeneous datasets.
- Score: 0.2580765958706853
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Winter wheat is one of the most important crops in the United Kingdom, and
crop yield prediction is essential for the nation's food security. Several
studies have employed machine learning (ML) techniques to predict crop yield on
a county or farm-based level. The main objective of this study is to predict
winter wheat crop yield using ML models on multiple heterogeneous datasets,
i.e., soil and weather on a zone-based level. Experimental results demonstrated
their impact when used alone and in combination. In addition, we employ
numerous ML algorithms to emphasize the significance of data quality in any
machine-learning strategy.
Related papers
- Anticipatory Understanding of Resilient Agriculture to Climate [66.008020515555]
We present a framework to better identify food security hotspots using a combination of remote sensing, deep learning, crop yield modeling, and causal modeling of the food distribution system.
We focus our analysis on the wheat breadbasket of northern India, which supplies a large percentage of the world's population.
arXiv Detail & Related papers (2024-11-07T22:29:05Z) - Generating Diverse Agricultural Data for Vision-Based Farming Applications [74.79409721178489]
This model is capable of simulating distinct growth stages of plants, diverse soil conditions, and randomized field arrangements under varying lighting conditions.
Our dataset includes 12,000 images with semantic labels, offering a comprehensive resource for computer vision tasks in precision agriculture.
arXiv Detail & Related papers (2024-03-27T08:42:47Z) - Machine Learning-based Nutrient Application's Timeline Recommendation
for Smart Agriculture: A Large-Scale Data Mining Approach [0.0]
Inaccurate fertiliser application decisions can lead to costly consequences, hinder food production, and cause environmental harm.
We propose a solution to predict nutrient application by determining required fertiliser quantities for an entire season.
The proposed solution recommends adjusting fertiliser amounts based on weather conditions and soil characteristics to promote cost-effective and environmentally friendly agriculture.
arXiv Detail & Related papers (2023-10-18T15:37:19Z) - Empirical Study of PEFT techniques for Winter Wheat Segmentation [6.110856077714895]
This study seeks to explore the feasibility of cross-area and cross-year out-of-distribution generalization using the State-of-the-Art (SOTA) wheat crop monitoring model.
We focus on adapting the SOTA TSViT model to address winter wheat field segmentation, a critical task for crop monitoring and food security.
Using PEFT techniques, we achieved notable results comparable to those achieved using full fine-tuning methods while training only a mere 0.7% parameters of the whole TSViT architecture.
arXiv Detail & Related papers (2023-10-03T06:42:28Z) - HarvestNet: A Dataset for Detecting Smallholder Farming Activity Using
Harvest Piles and Remote Sensing [50.4506590177605]
HarvestNet is a dataset for mapping the presence of farms in the Ethiopian regions of Tigray and Amhara during 2020-2023.
We introduce a new approach based on the detection of harvest piles characteristic of many smallholder systems.
We conclude that remote sensing of harvest piles can contribute to more timely and accurate cropland assessments in food insecure regions.
arXiv Detail & Related papers (2023-08-23T11:03:28Z) - Comparing Machine Learning Techniques for Alfalfa Biomass Yield
Prediction [0.8808021343665321]
alfalfa crop is globally important as livestock feed, so highly efficient planting and harvesting could benefit many industries.
Recent work using machine learning to predict yields for alfalfa and other crops has shown promise.
Previous efforts used remote sensing, weather, planting, and soil data to train machine learning models for yield prediction.
arXiv Detail & Related papers (2022-10-20T13:00:33Z) - MetaRF: Differentiable Random Forest for Reaction Yield Prediction with
a Few Trails [58.47364143304643]
In this paper, we focus on the reaction yield prediction problem.
We first put forth MetaRF, an attention-based differentiable random forest model specially designed for the few-shot yield prediction.
To improve the few-shot learning performance, we further introduce a dimension-reduction based sampling method.
arXiv Detail & Related papers (2022-08-22T06:40:13Z) - A Deep Neural Network Approach for Crop Selection and Yield Prediction
in Bangladesh [0.0]
This paper shows the best way of crop selection and yield prediction in minimum cost and effort.
In this paper, we have suggested using the deep neural network for agricultural crop selection and yield prediction.
arXiv Detail & Related papers (2021-08-06T22:25:46Z) - Comparison of Machine Learning Methods for Predicting Winter Wheat Yield
in Germany [0.0]
This study analyzed the performance of different machine learning methods for winter wheat yield prediction.
To address the seasonality, weekly features were used that explicitly take soil moisture conditions and meteorological events into account.
arXiv Detail & Related papers (2021-05-04T04:40:53Z) - Estimating Crop Primary Productivity with Sentinel-2 and Landsat 8 using
Machine Learning Methods Trained with Radiative Transfer Simulations [58.17039841385472]
We take advantage of all parallel developments in mechanistic modeling and satellite data availability for advanced monitoring of crop productivity.
Our model successfully estimates gross primary productivity across a variety of C3 crop types and environmental conditions even though it does not use any local information from the corresponding sites.
This highlights its potential to map crop productivity from new satellite sensors at a global scale with the help of current Earth observation cloud computing platforms.
arXiv Detail & Related papers (2020-12-07T16:23:13Z) - Learning from Data to Optimize Control in Precision Farming [77.34726150561087]
Special issue presents the latest development in statistical inference, machine learning and optimum control for precision farming.
Satellite positioning and navigation followed by Internet-of-Things generate vast information that can be used to optimize farming processes in real-time.
arXiv Detail & Related papers (2020-07-07T12:44:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.