Empirical Study of PEFT techniques for Winter Wheat Segmentation
- URL: http://arxiv.org/abs/2310.01825v2
- Date: Mon, 27 Nov 2023 10:39:13 GMT
- Title: Empirical Study of PEFT techniques for Winter Wheat Segmentation
- Authors: Mohamad Hasan Zahweh, Hasan Nasrallah, Mustafa Shukor, Ghaleb Faour
and Ali J. Ghandour
- Abstract summary: This study seeks to explore the feasibility of cross-area and cross-year out-of-distribution generalization using the State-of-the-Art (SOTA) wheat crop monitoring model.
We focus on adapting the SOTA TSViT model to address winter wheat field segmentation, a critical task for crop monitoring and food security.
Using PEFT techniques, we achieved notable results comparable to those achieved using full fine-tuning methods while training only a mere 0.7% parameters of the whole TSViT architecture.
- Score: 6.110856077714895
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Parameter Efficient Fine Tuning (PEFT) techniques have recently experienced
significant growth and have been extensively employed to adapt large vision and
language models to various domains, enabling satisfactory model performance
with minimal computational needs. Despite these advances, more research has yet
to delve into potential PEFT applications in real-life scenarios, particularly
in the critical domains of remote sensing and crop monitoring. The diversity of
climates across different regions and the need for comprehensive large-scale
datasets have posed significant obstacles to accurately identify crop types
across varying geographic locations and changing growing seasons. This study
seeks to bridge this gap by comprehensively exploring the feasibility of
cross-area and cross-year out-of-distribution generalization using the
State-of-the-Art (SOTA) wheat crop monitoring model. The aim of this work is to
explore PEFT approaches for crop monitoring. Specifically, we focus on adapting
the SOTA TSViT model to address winter wheat field segmentation, a critical
task for crop monitoring and food security. This adaptation process involves
integrating different PEFT techniques, including BigFit, LoRA, Adaptformer, and
prompt tuning. Using PEFT techniques, we achieved notable results comparable to
those achieved using full fine-tuning methods while training only a mere 0.7%
parameters of the whole TSViT architecture. The in-house labeled data-set,
referred to as the Beqaa-Lebanon dataset, comprises high-quality annotated
polygons for wheat and non-wheat classes with a total surface of 170 kmsq, over
five consecutive years. Using Sentinel-2 images, our model achieved a 84%
F1-score. We intend to publicly release the Lebanese winter wheat data set,
code repository, and model weights.
Related papers
- Anticipatory Understanding of Resilient Agriculture to Climate [66.008020515555]
We present a framework to better identify food security hotspots using a combination of remote sensing, deep learning, crop yield modeling, and causal modeling of the food distribution system.
We focus our analysis on the wheat breadbasket of northern India, which supplies a large percentage of the world's population.
arXiv Detail & Related papers (2024-11-07T22:29:05Z) - Generating Diverse Agricultural Data for Vision-Based Farming Applications [74.79409721178489]
This model is capable of simulating distinct growth stages of plants, diverse soil conditions, and randomized field arrangements under varying lighting conditions.
Our dataset includes 12,000 images with semantic labels, offering a comprehensive resource for computer vision tasks in precision agriculture.
arXiv Detail & Related papers (2024-03-27T08:42:47Z) - Adaptive Fusion of Multi-view Remote Sensing data for Optimal Sub-field
Crop Yield Prediction [24.995959334158986]
We present a novel multi-view learning approach to predict crop yield for different crops (soybean, wheat, rapeseed) and regions (Argentina, Uruguay, and Germany).
Our input data includes multi-spectral optical images from Sentinel-2 satellites and weather data as dynamic features during the crop growing season, complemented by static features like soil properties and topographic information.
To effectively fuse the data, we introduce a Multi-view Gated Fusion (MVGF) model, comprising dedicated view-encoders and a Gated Unit (GU) module.
The MVGF model is trained at sub-field level with 10 m resolution
arXiv Detail & Related papers (2024-01-22T11:01:52Z) - Improved Crop and Weed Detection with Diverse Data Ensemble Learning [18.490612639895893]
Modern agriculture heavily relies on Site-Specific Farm Management practices, necessitating accurate detection, localization, and quantification of crops and weeds in the field.
Existing methods augment and synthesize agricultural data to account for uncontrolled field conditions.
We propose utilizing data specific to other crops and weeds for our specific target problem.
arXiv Detail & Related papers (2023-10-02T10:05:30Z) - HarvestNet: A Dataset for Detecting Smallholder Farming Activity Using
Harvest Piles and Remote Sensing [50.4506590177605]
HarvestNet is a dataset for mapping the presence of farms in the Ethiopian regions of Tigray and Amhara during 2020-2023.
We introduce a new approach based on the detection of harvest piles characteristic of many smallholder systems.
We conclude that remote sensing of harvest piles can contribute to more timely and accurate cropland assessments in food insecure regions.
arXiv Detail & Related papers (2023-08-23T11:03:28Z) - Winter Wheat Crop Yield Prediction on Multiple Heterogeneous Datasets
using Machine Learning [0.2580765958706853]
Winter wheat is one of the most important crops in the United Kingdom, and crop yield prediction is essential for the nation's food security.
Several studies have employed machine learning (ML) techniques to predict crop yield on a county or farm-based level.
The main objective of this study is to predict winter wheat crop yield using ML models on multiple heterogeneous datasets.
arXiv Detail & Related papers (2023-06-20T23:52:39Z) - Agave crop segmentation and maturity classification with deep learning
data-centric strategies using very high-resolution satellite imagery [101.18253437732933]
We present an Agave tequilana Weber azul crop segmentation and maturity classification using very high resolution satellite imagery.
We solve real-world deep learning problems in the very specific context of agave crop segmentation.
With the resulting accurate models, agave production forecasting can be made available for large regions.
arXiv Detail & Related papers (2023-03-21T03:15:29Z) - Towards Global Crop Maps with Transfer Learning [0.0]
Deep learning models require large amounts of annotated data that are scarce and hard-to-acquire.
In this work, we have developed and trained a deep learning model for paddy rice detection in South Korea using Sentinel-1 VH-1 time-series.
Our approach shows excellent performance when transferring in different areas for the same crop type and rather promising results when transferring in a different area and crop type.
arXiv Detail & Related papers (2022-11-09T09:17:42Z) - Comparing Machine Learning Techniques for Alfalfa Biomass Yield
Prediction [0.8808021343665321]
alfalfa crop is globally important as livestock feed, so highly efficient planting and harvesting could benefit many industries.
Recent work using machine learning to predict yields for alfalfa and other crops has shown promise.
Previous efforts used remote sensing, weather, planting, and soil data to train machine learning models for yield prediction.
arXiv Detail & Related papers (2022-10-20T13:00:33Z) - Estimating Crop Primary Productivity with Sentinel-2 and Landsat 8 using
Machine Learning Methods Trained with Radiative Transfer Simulations [58.17039841385472]
We take advantage of all parallel developments in mechanistic modeling and satellite data availability for advanced monitoring of crop productivity.
Our model successfully estimates gross primary productivity across a variety of C3 crop types and environmental conditions even though it does not use any local information from the corresponding sites.
This highlights its potential to map crop productivity from new satellite sensors at a global scale with the help of current Earth observation cloud computing platforms.
arXiv Detail & Related papers (2020-12-07T16:23:13Z) - Semi-Supervised Semantic Segmentation in Earth Observation: The
MiniFrance Suite, Dataset Analysis and Multi-task Network Study [82.02173199363571]
We introduce a novel large-scale dataset for semi-supervised semantic segmentation in Earth Observation, the MiniFrance suite.
MiniFrance has several unprecedented properties: it is large-scale, containing over 2000 very high resolution aerial images, accounting for more than 200 billions samples (pixels)
We present tools for data representativeness analysis in terms of appearance similarity and a thorough study of MiniFrance data, demonstrating that it is suitable for learning and generalizes well in a semi-supervised setting.
arXiv Detail & Related papers (2020-10-15T15:36:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.