The Multimode Character of Quantum States Released from a
Superconducting Cavity
- URL: http://arxiv.org/abs/2306.12127v1
- Date: Wed, 21 Jun 2023 09:16:39 GMT
- Title: The Multimode Character of Quantum States Released from a
Superconducting Cavity
- Authors: Maryam Khanahmadi, Mads Middelhede Lund, Klaus M{\o}lmer, G\"oran
Johansson
- Abstract summary: We study the release of complex quantum states from a superconducting resonator.
We quantify the multi-mode character of the output state and discuss how to optimize the fidelity of a quantum state transfer process.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantum state transfer by propagating wave packets of electromagnetic
radiation requires tunable couplings between the sending and receiving quantum
systems and the propagation channel or waveguide. The highest fidelity of state
transfer in experimental demonstrations so far has been in superconducting
circuits. Here, the tunability always comes together with nonlinear
interactions, arising from the same Josephson junctions that enable the
tunability. The resulting non-linear dynamics correlates the photon number and
spatio-temporal degrees of freedom and leads to a multi-mode output state, for
any multi-photon state. In this work, we study as a generic example the release
of complex quantum states from a superconducting resonator, employing a flux
tunable coupler to engineer and control the release process. We quantify the
multi-mode character of the output state and discuss how to optimize the
fidelity of a quantum state transfer process with this in mind.
Related papers
- Nonlinear dynamical Casimir effect and Unruh entanglement in waveguide QED with parametrically modulated coupling [83.88591755871734]
We study theoretically an array of two-level qubits moving relative to a one-dimensional waveguide.
When the frequency of this motion approaches twice the qubit resonance frequency, it induces parametric generation of photons and excitation of the qubits.
We develop a comprehensive general theoretical framework that incorporates both perturbative diagrammatic techniques and a rigorous master-equation approach.
arXiv Detail & Related papers (2024-08-30T15:54:33Z) - Entanglement of photonic modes from a continuously driven two-level system [34.50067763557076]
We experimentally generate entangled photonic modes by continuously exciting a quantum emitter, a superconducting qubit, with a coherent drive.
We show that entanglement is generated between modes extracted from the two sidebands of the resonance fluorescence spectrum.
Our approach can be utilized to distribute entanglement at a high rate in various physical platforms.
arXiv Detail & Related papers (2024-07-10T18:48:41Z) - Path-entangled radiation from kinetic inductance amplifier [0.0]
We introduce a kinetic inductance quantum-limited amplifier that generates stationary path-entangled microwave radiation.
This work highlights the potential of kinetic inductance parametric amplifiers for practical applications such as quantum teleportation, distributed quantum computing, and enhanced quantum sensing.
arXiv Detail & Related papers (2024-06-19T06:00:43Z) - Quantum simulation in hybrid transmission lines [55.2480439325792]
We propose a hybrid platform, in which a right-handed transmission line is connected to a left-handed transmission line by means of a superconducting quantum interference device (SQUID)
We show that, by activating specific resonance conditions, this platform can be used as a quantum simulator of different phenomena in quantum optics, multimode quantum systems and quantum thermodynamics.
arXiv Detail & Related papers (2024-03-13T13:15:14Z) - Beyond-adiabatic Quantum Admittance of a Semiconductor Quantum Dot at High Frequencies: Rethinking Reflectometry as Polaron Dynamics [0.0]
We develop a self-consistent quantum master equation formalism to obtain the admittance of a quantum dot tunnel-coupled to a charge reservoir.
We describe two new photon-mediated regimes: Floquet broadening, determined by the dressing of the QD states, and broadening determined by photon loss in the system.
arXiv Detail & Related papers (2023-07-31T14:46:43Z) - Quantum emulation of the transient dynamics in the multistate
Landau-Zener model [50.591267188664666]
We study the transient dynamics in the multistate Landau-Zener model as a function of the Landau-Zener velocity.
Our experiments pave the way for more complex simulations with qubits coupled to an engineered bosonic mode spectrum.
arXiv Detail & Related papers (2022-11-26T15:04:11Z) - Slowing down light in a qubit metamaterial [98.00295925462214]
superconducting circuits in the microwave domain still lack such devices.
We demonstrate slowing down electromagnetic waves in a superconducting metamaterial composed of eight qubits coupled to a common waveguide.
Our findings demonstrate high flexibility of superconducting circuits to realize custom band structures.
arXiv Detail & Related papers (2022-02-14T20:55:10Z) - Waveguide quantum electrodynamics: collective radiance and photon-photon
correlations [151.77380156599398]
Quantum electrodynamics deals with the interaction of photons propagating in a waveguide with localized quantum emitters.
We focus on guided photons and ordered arrays, leading to super- and sub-radiant states, bound photon states and quantum correlations with promising quantum information applications.
arXiv Detail & Related papers (2021-03-11T17:49:52Z) - Waveguide Bandgap Engineering with an Array of Superconducting Qubits [101.18253437732933]
We experimentally study a metamaterial made of eight superconducting transmon qubits with local frequency control.
We observe the formation of super- and subradiant states, as well as the emergence of a polaritonic bandgap.
The circuit of this work extends experiments with one and two qubits towards a full-blown quantum metamaterial.
arXiv Detail & Related papers (2020-06-05T09:27:53Z) - A Phononic Bus for Coherent Interfaces Between a Superconducting Quantum
Processor, Spin Memory, and Photonic Quantum Networks [0.0]
We introduce a method for high-fidelity quantum state transduction between a superconducting microwave qubit and the ground state spin system of a solid-state artificial atom.
By combining the complementary strengths of superconducting circuit quantum computing and artificial atoms, the hybrid architecture provides high-fidelity qubit gates with long-lived quantum memory, high-fidelity measurement, large qubit number, reconfigurable qubit connectivity, and high-fidelity state and gate teleportation through optical quantum networks.
arXiv Detail & Related papers (2020-03-18T17:57:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.