Path-entangled radiation from kinetic inductance amplifier
- URL: http://arxiv.org/abs/2406.13239v1
- Date: Wed, 19 Jun 2024 06:00:43 GMT
- Title: Path-entangled radiation from kinetic inductance amplifier
- Authors: Abdul Mohamed, Shabir Barzanjeh,
- Abstract summary: We introduce a kinetic inductance quantum-limited amplifier that generates stationary path-entangled microwave radiation.
This work highlights the potential of kinetic inductance parametric amplifiers for practical applications such as quantum teleportation, distributed quantum computing, and enhanced quantum sensing.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Continuous variable entangled radiation, known as Einstein-Podolsky-Rosen (EPR) states, are spatially separated quantum states with applications ranging from quantum teleportation and communication to quantum sensing. The ability to efficiently generate and harness EPR states is vital for advancements of quantum technologies, particularly in the microwave domain. Here, we introduce a kinetic inductance quantum-limited amplifier that generates stationary path-entangled microwave radiation. Unlike traditional Josephson junction circuits, our design offers simplified fabrication and operational advantages. By generating single-mode squeezed states and distributing them to different ports of a microwave resonator, we deterministically create distributed entangled states at the output of the resonator. In addition to the experimental verification of entanglement, we present a simple theoretical model using a beam-splitter picture to describe the generation of path-entangled states in kinetic inductance superconducting circuits. This work highlights the potential of kinetic inductance parametric amplifiers, as a promising technology, for practical applications such as quantum teleportation, distributed quantum computing, and enhanced quantum sensing. Moreover, it can contribute to foundational tests of quantum mechanics and advances in next-generation quantum information technologies.
Related papers
- The multimode conditional quantum Entropy Power Inequality and the squashed entanglement of the extreme multimode bosonic Gaussian channels [53.253900735220796]
Inequality determines the minimum conditional von Neumann entropy of the output of the most general linear mixing of bosonic quantum modes.
Bosonic quantum systems constitute the mathematical model for the electromagnetic radiation in the quantum regime.
arXiv Detail & Related papers (2024-10-18T13:59:50Z) - A Superconducting Single-Atom Phonon Laser [0.0]
We experimentally demonstrate a direct quantum-acoustic equivalent of a single-atom laser.
A single superconducting qubit coupled to a high-overtone bulk acoustic resonator is used to drive the onset of phonon lasing.
We observe the absence of a sharp lower lasing threshold and characteristic upper lasing threshold, unique predictions of single-atom lasing.
arXiv Detail & Related papers (2023-12-21T15:37:55Z) - The Multimode Character of Quantum States Released from a
Superconducting Cavity [0.0]
We study the release of complex quantum states from a superconducting resonator.
We quantify the multi-mode character of the output state and discuss how to optimize the fidelity of a quantum state transfer process.
arXiv Detail & Related papers (2023-06-21T09:16:39Z) - Quantum emulation of the transient dynamics in the multistate
Landau-Zener model [50.591267188664666]
We study the transient dynamics in the multistate Landau-Zener model as a function of the Landau-Zener velocity.
Our experiments pave the way for more complex simulations with qubits coupled to an engineered bosonic mode spectrum.
arXiv Detail & Related papers (2022-11-26T15:04:11Z) - First design of a superconducting qubit for the QUB-IT experiment [50.591267188664666]
The goal of the QUB-IT project is to realize an itinerant single-photon counter exploiting Quantum Non Demolition (QND) measurements and entangled qubits.
We present the design and simulation of the first superconducting device consisting of a transmon qubit coupled to a resonator using Qiskit-Metal.
arXiv Detail & Related papers (2022-07-18T07:05:10Z) - Slowing down light in a qubit metamaterial [98.00295925462214]
superconducting circuits in the microwave domain still lack such devices.
We demonstrate slowing down electromagnetic waves in a superconducting metamaterial composed of eight qubits coupled to a common waveguide.
Our findings demonstrate high flexibility of superconducting circuits to realize custom band structures.
arXiv Detail & Related papers (2022-02-14T20:55:10Z) - Quantum transduction with microwave and optical entanglement [9.78316480470736]
Microwave-optical entanglement can be generated using various platforms.
In this paper, we make the teleportation induced conversion scheme more concrete in the framework of quantum channel theory.
arXiv Detail & Related papers (2022-02-09T17:51:29Z) - Parity measurement in the strong dispersive regime of circuit quantum
acoustodynamics [1.7673364730995766]
We show direct measurements of the phonon number distribution and parity of nonclassical mechanical states.
These measurements are some of the basic building blocks for constructing acoustic quantum memories and processors.
Our results open the door to performing even more complex quantum algorithms using mechanical systems.
arXiv Detail & Related papers (2021-10-01T08:40:26Z) - Circuit Quantum Electrodynamics [62.997667081978825]
Quantum mechanical effects at the macroscopic level were first explored in Josephson junction-based superconducting circuits in the 1980s.
In the last twenty years, the emergence of quantum information science has intensified research toward using these circuits as qubits in quantum information processors.
The field of circuit quantum electrodynamics (QED) has now become an independent and thriving field of research in its own right.
arXiv Detail & Related papers (2020-05-26T12:47:38Z) - Preparation of a superposition of squeezed coherent states of a cavity
field via coupling to a superconducting charge qubit [0.0]
We will discuss the issue of the generation of nonclassical states in the context of a superconducting qubit in a microcavity.
The key ingredients to engineer these quantum states are a tunable gate voltage and a classical magnetic field applied to SQUID.
arXiv Detail & Related papers (2020-03-20T18:06:47Z) - Quantum interactions with pulses of radiation [77.34726150561087]
This article presents a general master equation formalism for the interaction between travelling pulses of quantum radiation and localized quantum systems.
We develop a complete input-output theory to describe the driving of quantum systems by arbitrary incident pulses of radiation and the quantum state of the field emitted into any desired outgoing temporal mode.
arXiv Detail & Related papers (2020-03-10T08:35:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.