Quantum switches for single-photon routing and entanglement generation in waveguide-based networks
- URL: http://arxiv.org/abs/2503.10276v2
- Date: Tue, 18 Mar 2025 10:17:33 GMT
- Title: Quantum switches for single-photon routing and entanglement generation in waveguide-based networks
- Authors: Juan Cumbrado, Ricardo Puebla,
- Abstract summary: interconnection of quantum nodes holds great promise for scaling up quantum computing units.<n>We propose leveraging additional qubit degrees of freedom as quantum switches that coherently condition the system dynamics.<n>We present deterministic protocols for generating entangled states via single-photon routing across the network.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The interconnection of quantum nodes holds great promise for scaling up quantum computing units and enabling information processing across long-distance quantum registers. Such quantum networks can be realized using superconducting qubits linked by waveguides, which facilitate fast and robust on-demand quantum information exchange via traveling single photons. In this article, we propose leveraging additional qubit degrees of freedom as quantum switches that coherently condition the system dynamics. These switches are implemented using a qubit dispersively coupled to transfer resonators, which mediate interactions between node qubits and quantum links. Through wavepacket shaping techniques, we demonstrate that when the switch is closed, full excitation transfer occurs as a propagating photon, whereas an open switch allows only partial transfer without distorting the shape of the emitted photon. Based on this switch mechanism, we present deterministic protocols for generating entangled states via single-photon routing across the network, such as Bell, Greenberger-Horne-Zeilinger and W states. The feasibility of our approach is validated through numerical simulations of a three-node network, incorporating decoherence and photon loss effects. Our results indicate that high-fidelity entangled states can be realized employing the proposed quantum switches in current state-of-the-art platforms.
Related papers
- Optical single-shot readout of spin qubits in silicon [41.94295877935867]
silicon nanofabrication offers unique advantages for integration and up-scaling.
Small spin-qubit registers have exceeded error-correction thresholds, their connection to large quantum computers is an outstanding challenge.
We implement such an efficient spin-photon interface based on erbium dopants in a nanophotonic resonator.
arXiv Detail & Related papers (2024-05-08T18:30:21Z) - Non-Hermitian unidirectional routing of photonic qubits [4.094098809740733]
We show that neutral cold atoms can mediate both dissipative and coherent couplings.
We synthesizing a system with dual functionality as both a photonic qubit unidirectional router and a spin-wave diode.
arXiv Detail & Related papers (2024-04-01T16:10:24Z) - Enhanced quantum state transfer: Circumventing quantum chaotic behavior [35.74056021340496]
We show how to transfer few-particle quantum states in a two-dimensional quantum network.
Our approach paves the way to short-distance quantum communication for connecting distributed quantum processors or registers.
arXiv Detail & Related papers (2024-02-01T19:00:03Z) - Simulation of Entanglement Generation between Absorptive Quantum
Memories [56.24769206561207]
We use the open-source Simulator of QUantum Network Communication (SeQUeNCe), developed by our team, to simulate entanglement generation between two atomic frequency comb (AFC) absorptive quantum memories.
We realize the representation of photonic quantum states within truncated Fock spaces in SeQUeNCe.
We observe varying fidelity with SPDC source mean photon number, and varying entanglement generation rate with both mean photon number and memory mode number.
arXiv Detail & Related papers (2022-12-17T05:51:17Z) - On-Demand Directional Microwave Photon Emission Using Waveguide Quantum
Electrodynamics [38.42250061908039]
We demonstrate high-fidelity, on-demand, directional, microwave photon emission.
We do this using an artificial molecule comprising two superconducting qubits strongly coupled to a bidirectional waveguide.
This circuit will also be capable of photon absorption, making it suitable for building interconnects within quantum networks.
arXiv Detail & Related papers (2022-03-02T21:45:00Z) - Remote Entanglement of Superconducting Qubits via Solid-State Spin
Quantum Memories [0.0]
Quantum communication between remote superconducting systems is being studied intensively to increase the number of integrated superconducting qubits.
We propose an entanglement distribution scheme using a solid-state spin quantum memory that works as an interface for both microwave and optical photons.
arXiv Detail & Related papers (2022-02-16T06:43:22Z) - Chiral Quantum Network with Giant Atoms [7.33811357166334]
In superconducting quantum circuits (SQCs), chiral routing quantum information is often realized with the ferrite circulators.
We propose a novel method to realize chiral quantum networks by exploiting giant atom effects in SQC platforms.
arXiv Detail & Related papers (2021-06-24T17:08:49Z) - Telecom-heralded entanglement between remote multimode solid-state
quantum memories [55.41644538483948]
Future quantum networks will enable the distribution of entanglement between distant locations and allow applications in quantum communication, quantum sensing and distributed quantum computation.
Here we report the demonstration of heralded entanglement between two spatially separated quantum nodes, where the entanglement is stored in multimode solid-state quantum memories.
We also show that the generated entanglement is robust against loss in the heralding path, and demonstrate temporally multiplexed operation, with 62 temporal modes.
arXiv Detail & Related papers (2021-01-13T14:31:54Z) - Optically-Heralded Entanglement of Superconducting Systems in Quantum
Networks [0.0]
We propose optical networking via heralding end-to-end entanglement with one detected photon and teleportation.
This technique unifies and simplifies entanglement generation between superconducting devices and other physical modalities in quantum networks.
arXiv Detail & Related papers (2020-12-24T19:00:01Z) - Generating Spatially Entangled Itinerant Photons with Waveguide Quantum
Electrodynamics [43.53795072498062]
In this work, we demonstrate the deterministic generation of such photons using superconducting transmon qubits that are directly coupled to a waveguide.
We generate two-photon N00N states and show that the state and spatial entanglement of the emitted photons are tunable via the qubit frequencies.
arXiv Detail & Related papers (2020-03-16T16:03:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.