Spatial Heterophily Aware Graph Neural Networks
- URL: http://arxiv.org/abs/2306.12139v1
- Date: Wed, 21 Jun 2023 09:35:50 GMT
- Title: Spatial Heterophily Aware Graph Neural Networks
- Authors: Congxi Xiao, Jingbo Zhou, Jizhou Huang, Tong Xu, Hui Xiong
- Abstract summary: Graph Neural Networks (GNNs) have been broadly applied in many urban applications upon formulating a city as an urban graph whose nodes are urban objects like regions or points of interest.
Recently, a few enhanced GNN architectures have been developed to tackle heterophily graphs where connected nodes are dissimilar.
However, urban graphs usually can be observed to possess a unique spatial heterophily property; that is, the dissimilarity of neighbors at different spatial distances can exhibit great diversity.
We propose a metric, named Spatial Diversity Score, to quantitatively measure the spatial heterophily and show how it can influence the performance of GNN
- Score: 35.95622680895503
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Graph Neural Networks (GNNs) have been broadly applied in many urban
applications upon formulating a city as an urban graph whose nodes are urban
objects like regions or points of interest. Recently, a few enhanced GNN
architectures have been developed to tackle heterophily graphs where connected
nodes are dissimilar. However, urban graphs usually can be observed to possess
a unique spatial heterophily property; that is, the dissimilarity of neighbors
at different spatial distances can exhibit great diversity. This property has
not been explored, while it often exists. To this end, in this paper, we
propose a metric, named Spatial Diversity Score, to quantitatively measure the
spatial heterophily and show how it can influence the performance of GNNs.
Indeed, our experimental investigation clearly shows that existing heterophilic
GNNs are still deficient in handling the urban graph with high spatial
diversity score. This, in turn, may degrade their effectiveness in urban
applications. Along this line, we propose a Spatial Heterophily Aware Graph
Neural Network (SHGNN), to tackle the spatial diversity of heterophily of urban
graphs. Based on the key observation that spatially close neighbors on the
urban graph present a more similar mode of difference to the central node, we
first design a rotation-scaling spatial aggregation module, whose core idea is
to properly group the spatially close neighbors and separately process each
group with less diversity inside. Then, a heterophily-sensitive spatial
interaction module is designed to adaptively capture the commonality and
diverse dissimilarity in different spatial groups. Extensive experiments on
three real-world urban datasets demonstrate the superiority of our SHGNN over
several its competitors.
Related papers
- DepWiGNN: A Depth-wise Graph Neural Network for Multi-hop Spatial
Reasoning in Text [52.699307699505646]
We propose a novel Depth-Wise Graph Neural Network (DepWiGNN) to handle multi-hop spatial reasoning.
Specifically, we design a novel node memory scheme and aggregate the information over the depth dimension instead of the breadth dimension of the graph.
Experimental results on two challenging multi-hop spatial reasoning datasets show that DepWiGNN outperforms existing spatial reasoning methods.
arXiv Detail & Related papers (2023-10-19T08:07:22Z) - LSGNN: Towards General Graph Neural Network in Node Classification by
Local Similarity [59.41119013018377]
We propose to use the local similarity (LocalSim) to learn node-level weighted fusion, which can also serve as a plug-and-play module.
For better fusion, we propose a novel and efficient Initial Residual Difference Connection (IRDC) to extract more informative multi-hop information.
Our proposed method, namely Local Similarity Graph Neural Network (LSGNN), can offer comparable or superior state-of-the-art performance on both homophilic and heterophilic graphs.
arXiv Detail & Related papers (2023-05-07T09:06:11Z) - Incorporating Heterophily into Graph Neural Networks for Graph Classification [6.709862924279403]
Graph Neural Networks (GNNs) often assume strong homophily for graph classification, seldom considering heterophily.
We develop a novel GNN architecture called IHGNN (short for Incorporating Heterophily into Graph Neural Networks)
We empirically validate IHGNN on various graph datasets and demonstrate that it outperforms the state-of-the-art GNNs for graph classification.
arXiv Detail & Related papers (2022-03-15T06:48:35Z) - Space4HGNN: A Novel, Modularized and Reproducible Platform to Evaluate
Heterogeneous Graph Neural Network [51.07168862821267]
We propose a unified framework covering most HGNNs, consisting of three components: heterogeneous linear transformation, heterogeneous graph transformation, and heterogeneous message passing layer.
We then build a platform Space4HGNN by defining a design space for HGNNs based on the unified framework, which offers modularized components, reproducible implementations, and standardized evaluation for HGNNs.
arXiv Detail & Related papers (2022-02-18T13:11:35Z) - Effective Urban Region Representation Learning Using Heterogeneous Urban
Graph Attention Network (HUGAT) [0.0]
We propose heterogeneous urban graph attention network (HUGAT) for learning the representations of urban regions.
In our experiments on NYC data, HUGAT outperformed all the state-of-the-art models.
arXiv Detail & Related papers (2022-02-18T04:59:20Z) - Positional Encoder Graph Neural Networks for Geographic Data [1.840220263320992]
Graph neural networks (GNNs) provide a powerful and scalable solution for modeling continuous spatial data.
In this paper, we propose PE-GNN, a new framework that incorporates spatial context and correlation explicitly into the models.
arXiv Detail & Related papers (2021-11-19T10:41:49Z) - Neural Embeddings of Urban Big Data Reveal Emergent Structures in Cities [7.148078723492643]
We propose using a neural embedding model-graph neural network (GNN)- that leverages the heterogeneous features of urban areas.
Using large-scale high-resolution mobility data sets from millions of aggregated and anonymized mobile phone users in 16 metropolitan counties in the United States, we demonstrate that our embeddings encode complex relationships among features related to urban components.
We show that embeddings generated by a model trained on a different county can capture 50% to 60% of the emergent spatial structure in another county.
arXiv Detail & Related papers (2021-10-24T07:13:14Z) - ACE-HGNN: Adaptive Curvature Exploration Hyperbolic Graph Neural Network [72.16255675586089]
We propose an Adaptive Curvature Exploration Hyperbolic Graph NeuralNetwork named ACE-HGNN to adaptively learn the optimal curvature according to the input graph and downstream tasks.
Experiments on multiple real-world graph datasets demonstrate a significant and consistent performance improvement in model quality with competitive performance and good generalization ability.
arXiv Detail & Related papers (2021-10-15T07:18:57Z) - Spectral-Spatial Global Graph Reasoning for Hyperspectral Image
Classification [50.899576891296235]
Convolutional neural networks have been widely applied to hyperspectral image classification.
Recent methods attempt to address this issue by performing graph convolutions on spatial topologies.
arXiv Detail & Related papers (2021-06-26T06:24:51Z) - Quantifying spatial homogeneity of urban road networks via graph neural
networks [12.875369866362327]
The spatial homogeneity of an urban road network (URN) measures whether each distinct component is analogous to the whole network.
We use Graph Neural Networks to model the 11,790 URN samples across 30 cities worldwide and use its predictability to define the spatial homogeneity.
arXiv Detail & Related papers (2021-01-01T19:45:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.