論文の概要: Joint Dense-Point Representation for Contour-Aware Graph Segmentation
- arxiv url: http://arxiv.org/abs/2306.12155v1
- Date: Wed, 21 Jun 2023 10:07:17 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-22 14:00:03.110427
- Title: Joint Dense-Point Representation for Contour-Aware Graph Segmentation
- Title(参考訳): 輪郭対応グラフセグメンテーションのための共同線分表現法
- Authors: Kit Mills Bransby, Greg Slabaugh, Christos Bourantas, Qianni Zhang
- Abstract要約: 本稿では,点と画素の輪郭表現を共同で学習することにより,グラフと高密度セグメンテーション技術を組み合わせた新しい手法を提案する。
これは、不整合目的がネットワークを識別的・輪郭的特徴の学習から制限する典型的なグラフ分割法における欠陥に対処する。
提案手法はいくつかのケストX線データセットで検証され,セグメンテーション安定性と精度の明確な改善が示された。
- 参考スコア(独自算出の注目度): 2.138299283227551
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present a novel methodology that combines graph and dense segmentation
techniques by jointly learning both point and pixel contour representations,
thereby leveraging the benefits of each approach. This addresses deficiencies
in typical graph segmentation methods where misaligned objectives restrict the
network from learning discriminative vertex and contour features. Our joint
learning strategy allows for rich and diverse semantic features to be encoded,
while alleviating common contour stability issues in dense-based approaches,
where pixel-level objectives can lead to anatomically implausible topologies.
In addition, we identify scenarios where correct predictions that fall on the
contour boundary are penalised and address this with a novel hybrid contour
distance loss. Our approach is validated on several Chest X-ray datasets,
demonstrating clear improvements in segmentation stability and accuracy against
a variety of dense- and point-based methods. Our source code is freely
available at: www.github.com/kitbransby/Joint_Graph_Segmentation
- Abstract(参考訳): 本稿では,点輪郭表現と画素輪郭表現を共同で学習することにより,グラフと高密度分割技術を組み合わせた新しい手法を提案する。
これは、ネットワークが識別頂点や輪郭特徴の学習を制限している典型的なグラフセグメンテーションの方法の欠陥に対処する。
私たちの共同学習戦略は、リッチで多様な意味的特徴をエンコードできると同時に、ピクセルレベルの目標が解剖学的に目立たないトポロジーにつながるような、密集したアプローチにおける共通の輪郭安定問題を緩和します。
さらに,輪郭境界に落下する正確な予測をペナルティに課すシナリオを特定し,新たなハイブリッド輪郭距離損失法を提案する。
提案手法は胸部x線データで検証され,様々な密度・点ベース法に対してセグメント化安定性と精度が明らかに改善されている。
私たちのソースコードは、www.github.com/kitbransby/Joint_Graph_Segmentationで無料で利用可能です。
関連論文リスト
- Deep Manifold Graph Auto-Encoder for Attributed Graph Embedding [51.75091298017941]
本稿では,属性付きグラフデータに対する新しいDeep Manifold (Variational) Graph Auto-Encoder (DMVGAE/DMGAE)を提案する。
提案手法は,最先端のベースラインアルゴリズムを,一般的なデータセット間でのダウンストリームタスクの差を大きく越える。
論文 参考訳(メタデータ) (2024-01-12T17:57:07Z) - gcDLSeg: Integrating Graph-cut into Deep Learning for Binary Semantic
Segmentation [14.643505343450897]
エンドツーエンド学習のためのディープラーニングネットワークにグラフカットアプローチを統合することを提案する。
推論フェーズでは、最適化画像の特徴に基づいて定義されたグラフカットエネルギーに対して、大域的最適セグメンテーションが達成される。
論文 参考訳(メタデータ) (2023-12-07T21:43:43Z) - GraphFit: Learning Multi-scale Graph-Convolutional Representation for
Point Cloud Normal Estimation [31.40738037512243]
本研究では,非構造3次元点雲の高精度かつ効率的な正規推定法を提案する。
我々は、より局所的な近傍幾何学を強調する正規推定のためのグラフ畳み込み特徴表現を学習する。
提案手法は,様々なベンチマークデータセットにおいて,最先端の精度で競合より優れる。
論文 参考訳(メタデータ) (2022-07-23T10:29:26Z) - Learning Graph Regularisation for Guided Super-Resolution [77.7568596501908]
誘導超解像のための新しい定式化を導入する。
そのコアは、学習親和性グラフ上で動作する微分可能な最適化層である。
提案手法をいくつかのデータセット上で広範囲に評価し, 定量的な再構成誤差の点から最近のベースラインを一貫して上回っている。
論文 参考訳(メタデータ) (2022-03-27T13:12:18Z) - Bayesian Graph Contrastive Learning [55.36652660268726]
本稿では,ランダムな拡張がエンコーダにつながることを示すグラフコントラスト学習手法の新たな視点を提案する。
提案手法は,各ノードを決定論的ベクトルに埋め込む既存の手法とは対照的に,各ノードを潜在空間の分布で表現する。
いくつかのベンチマークデータセットにおける既存の最先端手法と比較して,性能が大幅に向上したことを示す。
論文 参考訳(メタデータ) (2021-12-15T01:45:32Z) - Uncertainty-Based Dynamic Graph Neighborhoods For Medical Segmentation [0.0]
セグメンテーションの結果の処理と精錬は、セグメンテーションネットワークから派生した誤分類を減らすための一般的な手法である。
グラフベースのアプローチでは、グラフ内の特定の不確実点を利用し、小さなグラフ畳み込みネットワーク(GCN)に従ってセグメンテーションを洗練する。
本稿では,特徴距離に応じた新しい隣人選択機構を提案し,トレーニング手順における2つのネットワークの組み合わせを提案する。
論文 参考訳(メタデータ) (2021-08-06T13:39:35Z) - Polygonal Point Set Tracking [50.445151155209246]
本稿では,学習に基づく多角形点集合追跡手法を提案する。
私たちのゴールは、ターゲットの輪郭上の対応する点を追跡することです。
本稿では,部分歪みとテキストマッピングに対する本手法の視覚効果について述べる。
論文 参考訳(メタデータ) (2021-05-30T17:12:36Z) - Spatial-spectral Hyperspectral Image Classification via Multiple Random
Anchor Graphs Ensemble Learning [88.60285937702304]
本稿では,複数のランダムアンカーグラフアンサンブル学習(RAGE)を用いた空間スペクトルHSI分類手法を提案する。
まず、各選択されたバンドのより記述的な特徴を抽出し、局所的な構造と領域の微妙な変化を保存するローカルバイナリパターンを採用する。
次に,アンカーグラフの構成に適応隣接代入を導入し,計算複雑性を低減した。
論文 参考訳(メタデータ) (2021-03-25T09:31:41Z) - Semantic Graph Based Place Recognition for 3D Point Clouds [22.608115489674653]
本稿では,位置認識のためのセマンティックグラフに基づく新しいアプローチを提案する。
まず、ポイントクラウドシーンのための新しいセマンティックグラフ表現を提案する。
次に、その類似性を計算するために、高速で効果的なグラフ類似性ネットワークを設計する。
論文 参考訳(メタデータ) (2020-08-26T09:27:26Z) - Weakly-Supervised Semantic Segmentation by Iterative Affinity Learning [86.45526827323954]
弱教師付きセマンティックセグメンテーションは、トレーニングのためにピクセル単位のラベル情報が提供されないため、難しい課題である。
このようなペア関係を学習するための反復アルゴリズムを提案する。
本稿では,提案アルゴリズムが最先端手法に対して好適に動作することを示す。
論文 参考訳(メタデータ) (2020-02-19T10:32:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。