論文の概要: Fantastic Weights and How to Find Them: Where to Prune in Dynamic Sparse
Training
- arxiv url: http://arxiv.org/abs/2306.12230v1
- Date: Wed, 21 Jun 2023 12:43:55 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-22 13:28:50.423097
- Title: Fantastic Weights and How to Find Them: Where to Prune in Dynamic Sparse
Training
- Title(参考訳): ファンタスティックウェイトとテーマの発見方法:ダイナミックスパーストレーニングにおけるプーンの場所
- Authors: Aleksandra I. Nowak, Bram Grooten, Decebal Constantin Mocanu, Jacek
Tabor
- Abstract要約: 本研究では,プルーニング基準が動的スパーストレーニング(DST)性能に及ぼす影響について検討する。
その結果,研究手法のほとんどが同様の結果をもたらすことがわかった。
最高のパフォーマンスは、最も単純なテクニックであるマグニチュードベースのプルーニングによって主に与えられる。
- 参考スコア(独自算出の注目度): 71.91858672412332
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Dynamic Sparse Training (DST) is a rapidly evolving area of research that
seeks to optimize the sparse initialization of a neural network by adapting its
topology during training. It has been shown that under specific conditions, DST
is able to outperform dense models. The key components of this framework are
the pruning and growing criteria, which are repeatedly applied during the
training process to adjust the network's sparse connectivity. While the growing
criterion's impact on DST performance is relatively well studied, the influence
of the pruning criterion remains overlooked. To address this issue, we design
and perform an extensive empirical analysis of various pruning criteria to
better understand their effect on the dynamics of DST solutions. Surprisingly,
we find that most of the studied methods yield similar results. The differences
become more significant in the low-density regime, where the best performance
is predominantly given by the simplest technique: magnitude-based pruning. The
code is provided at https://github.com/alooow/fantastic_weights_paper
- Abstract(参考訳): ダイナミックスパーストレーニング(Dynamic Sparse Training, DST)は、トレーニング中にトポロジを適応することによって、ニューラルネットワークのスパース初期化を最適化しようとする、急速に発展する研究分野である。
特定の条件下では、DSTは高密度モデルより優れていることが示されている。
このフレームワークの主要なコンポーネントは、ネットワークの疎結合性を調整するためにトレーニングプロセス中に繰り返し適用されるプルーニングと成長の基準である。
DST性能に対する評価基準の増大の影響は比較的よく研究されているが、刈り取り基準の影響は見落としている。
この問題に対処するため,我々は,dstソリューションのダイナミクスへの影響をよりよく理解するために,様々なプルーニング基準の広範な実証分析を設計・実施する。
驚くべきことに、研究手法のほとんどが同様の結果をもたらすことがわかった。
この違いは、最も単純な技術であるマグニチュード・ベース・プルーニングによって最も優れた性能が与えられる低密度体制においてより重要になる。
コードはhttps://github.com/alooow/fantastic_weights_paperで提供される。
関連論文リスト
- Continual Learning with Dynamic Sparse Training: Exploring Algorithms
for Effective Model Updates [13.983410740333788]
連続学習(英: Continual Learning, CL)とは、知的なシステムが、可能な限り計算オーバーヘッドの少ないデータストリームから、逐次的に知識を取得し、保持する能力である。
ダイナミックスパーストレーニング(Dynamic Sparse Training, DST)は、これらのスパースネットワークを見つけ、タスクごとに分離する方法である。
本論文は,CLパラダイムの下で異なるDST成分の効果を検証した最初の実証的研究である。
論文 参考訳(メタデータ) (2023-08-28T18:31:09Z) - Accurate Neural Network Pruning Requires Rethinking Sparse Optimization [87.90654868505518]
標準コンピュータビジョンと自然言語処理の疎度ベンチマークを用いたモデルトレーニングにおいて,高い疎度が与える影響について述べる。
本稿では,視覚モデルのスパース事前学習と言語モデルのスパース微調整の両面において,この問題を軽減するための新しいアプローチを提案する。
論文 参考訳(メタデータ) (2023-08-03T21:49:14Z) - What to Prune and What Not to Prune at Initialization [0.0]
トレーニング後のドロップアウトベースのアプローチは、高いスパシティを実現する。
ネットワークの計算コストのスケーリングに関しては,初期化プルーニングの方が有効だ。
目標は、パフォーマンスを維持しながら、より高い疎性を達成することです。
論文 参考訳(メタデータ) (2022-09-06T03:48:10Z) - Training Discrete Deep Generative Models via Gapped Straight-Through
Estimator [72.71398034617607]
再サンプリングのオーバーヘッドを伴わずに分散を低減するため, GST (Gapped Straight-Through) 推定器を提案する。
この推定子は、Straight-Through Gumbel-Softmaxの本質的な性質に着想を得たものである。
実験により,提案したGST推定器は,2つの離散的な深部生成モデリングタスクの強いベースラインと比較して,優れた性能を享受できることが示された。
論文 参考訳(メタデータ) (2022-06-15T01:46:05Z) - Accelerating Deep Learning with Dynamic Data Pruning [0.0]
ディープラーニングは、最先端のネットワークをトレーニングするために強力なコンピューティングシステムへのアクセスを必要とするため、違法にコストがかかるようになった。
forget scoresやGraNd/EL2N scoresといった以前の作業では、完全なデータセット内の重要なサンプルを特定し、残りのサンプルを刈り取ることで、エポック毎のイテレーションを減らすことができる。
本稿では,強化学習手法に基づく2つのアルゴリズムを提案し,ランダムな動的手法よりも高い精度でサンプルを動的にプーンする。
論文 参考訳(メタデータ) (2021-11-24T16:47:34Z) - Back to Basics: Efficient Network Compression via IMP [22.586474627159287]
イテレーティブ・マグニチュード・プルーニング(IMP)は、ネットワーク・プルーニングにおける最も確立されたアプローチの1つである。
IMPは、トレーニングフェーズにスパーシフィケーションを組み込まないことで、最適以下の状態に達するとしばしば主張される。
再学習のためのSLRを用いたIMPは、最先端のプルーニング訓練手法よりも優れていることがわかった。
論文 参考訳(メタデータ) (2021-11-01T11:23:44Z) - Sparse Training via Boosting Pruning Plasticity with Neuroregeneration [79.78184026678659]
本研究では, プラスティック性の観点から, 訓練を通しての刈り込みの効果について検討した。
ゼロコスト神経再生(GraNet)と動的スパーストレーニング(DST)変異(GraNet-ST)を併用した段階的プラニング(gradual pruning)法を考案した。
おそらく最も印象的なのは、ImageNet上のResNet-50との大きなマージンで、さまざまな密集したスパースメソッドに対するスパース・ツー・スパーストレーニングのパフォーマンスを初めて向上させたことだ。
論文 参考訳(メタデータ) (2021-06-19T02:09:25Z) - A Partial Regularization Method for Network Compression [0.0]
本稿では, モデル圧縮を高速に行うために, 完全正則化と言われる全てのパラメータをペナライズする元の形式ではなく, 部分正則化のアプローチを提案する。
実験結果から, ほぼすべての状況において, 走行時間の減少を観測することにより, 計算複雑性を低減できることが示唆された。
驚くべきことに、複数のデータセットのトレーニングフェーズとテストフェーズの両方において、回帰フィッティング結果や分類精度などの重要な指標を改善するのに役立ちます。
論文 参考訳(メタデータ) (2020-09-03T00:38:27Z) - AdaS: Adaptive Scheduling of Stochastic Gradients [50.80697760166045]
我々は、textit "knowledge gain" と textit "mapping condition" の概念を導入し、Adaptive Scheduling (AdaS) と呼ばれる新しいアルゴリズムを提案する。
実験によると、AdaSは派生した指標を用いて、既存の適応学習手法よりも高速な収束と優れた一般化、そして(b)いつトレーニングを中止するかを決定するための検証セットへの依存の欠如を示す。
論文 参考訳(メタデータ) (2020-06-11T16:36:31Z) - Revisiting Initialization of Neural Networks [72.24615341588846]
ヘッセン行列のノルムを近似し, 制御することにより, 層間における重みのグローバルな曲率を厳密に推定する。
Word2Vec と MNIST/CIFAR 画像分類タスクの実験により,Hessian ノルムの追跡が診断ツールとして有用であることが確認された。
論文 参考訳(メタデータ) (2020-04-20T18:12:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。