論文の概要: Predicting protein variants with equivariant graph neural networks
- arxiv url: http://arxiv.org/abs/2306.12231v2
- Date: Mon, 24 Jul 2023 09:36:05 GMT
- ステータス: 処理完了
- システム内更新日: 2023-07-25 20:45:04.422879
- Title: Predicting protein variants with equivariant graph neural networks
- Title(参考訳): 同変グラフニューラルネットワークによるタンパク質の変異予測
- Authors: Antonia Boca, Simon Mathis
- Abstract要約: 我々は,同変グラフニューラルネットワーク(EGNN)と配列に基づくアプローチによる有望なアミノ酸変異の同定能力の比較を行った。
提案する構造的アプローチは, より少ない分子で訓練しながら, 配列に基づくアプローチと競合する性能を実現する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Pre-trained models have been successful in many protein engineering tasks.
Most notably, sequence-based models have achieved state-of-the-art performance
on protein fitness prediction while structure-based models have been used
experimentally to develop proteins with enhanced functions. However, there is a
research gap in comparing structure- and sequence-based methods for predicting
protein variants that are better than the wildtype protein. This paper aims to
address this gap by conducting a comparative study between the abilities of
equivariant graph neural networks (EGNNs) and sequence-based approaches to
identify promising amino-acid mutations. The results show that our proposed
structural approach achieves a competitive performance to sequence-based
methods while being trained on significantly fewer molecules. Additionally, we
find that combining assay labelled data with structure pre-trained models
yields similar trends as with sequence pre-trained models.
Our code and trained models can be found at:
https://github.com/semiluna/partIII-amino-acid-prediction.
- Abstract(参考訳): 事前訓練されたモデルは多くのタンパク質工学タスクで成功している。
最も顕著なのは、配列ベースのモデルがタンパク質の適合性予測の最先端のパフォーマンスを達成し、一方構造ベースのモデルは機能強化されたタンパク質の開発に実験的に利用されていることである。
しかし、野生型タンパク質よりも優れたタンパク質変異を予測するための構造および配列に基づく方法の比較には研究のギャップがある。
本稿では,同変グラフニューラルネットワーク(EGNN)の能力と,有望なアミノ酸変異を同定するためのシーケンスベースアプローチの比較研究を行うことにより,このギャップに対処することを目的とする。
その結果, 提案手法は, 分子量が少なく, 配列に基づく手法と競合する性能を発揮することがわかった。
さらに, ラベル付きデータと構造事前学習モデルを組み合わせることで, シーケンス事前学習モデルと同様の傾向が得られた。
私たちのコードとトレーニングされたモデルは、https://github.com/semiluna/partiii-amino-acid-predictionで見ることができます。
関連論文リスト
- SFM-Protein: Integrative Co-evolutionary Pre-training for Advanced Protein Sequence Representation [97.99658944212675]
タンパク質基盤モデルのための新しい事前学習戦略を導入する。
アミノ酸残基間の相互作用を強調し、短距離および長距離の共進化的特徴の抽出を強化する。
大規模タンパク質配列データセットを用いて学習し,より優れた一般化能力を示す。
論文 参考訳(メタデータ) (2024-10-31T15:22:03Z) - PSC-CPI: Multi-Scale Protein Sequence-Structure Contrasting for
Efficient and Generalizable Compound-Protein Interaction Prediction [63.50967073653953]
化合物-タンパク質相互作用予測は、合理的な薬物発見のための化合物-タンパク質相互作用のパターンと強度を予測することを目的としている。
既存のディープラーニングベースの手法では、タンパク質配列や構造が単一のモダリティしか利用していない。
CPI予測のためのマルチスケールタンパク質配列構造コントラストフレームワークを提案する。
論文 参考訳(メタデータ) (2024-02-13T03:51:10Z) - ProtIR: Iterative Refinement between Retrievers and Predictors for
Protein Function Annotation [38.019425619750265]
本稿では,タンパク質間類似性モデリングを取り入れた関数予測器の改良を目的とした,新しい変分擬似類似性フレームワークProtIRを提案する。
ProtIRは、バニラ予測に基づく手法よりも約10%改善されている。
タンパク質言語モデルに基づく手法と同等の性能を発揮するが、大規模な事前学習は必要としない。
論文 参考訳(メタデータ) (2024-02-10T17:31:46Z) - Retrieved Sequence Augmentation for Protein Representation Learning [40.13920287967866]
本稿では,タンパク質表現学習のための検索シーケンス拡張について,アライメントや前処理を伴わずに導入する。
本モデルでは,新しいタンパク質ドメインに移行し,デノボタンパク質の予測においてMSAトランスフォーマーより優れていることを示す。
我々の研究はタンパク質の予測における大きなギャップを埋め、タンパク質配列を理解するのに必要なドメイン知識の解読に一歩近づいた。
論文 参考訳(メタデータ) (2023-02-24T10:31:45Z) - Reprogramming Pretrained Language Models for Protein Sequence
Representation Learning [68.75392232599654]
エンドツーエンドの表現学習フレームワークである辞書学習(R2DL)による表現学習を提案する。
R2DLは、タンパク質配列の埋め込みを学ぶために、事前訓練された英語モデルを再プログラムする。
我々のモデルは,事前訓練および標準教師付き手法によって設定されたベースラインに対して,最大105ドルの精度でデータ効率を大幅に向上させることができる。
論文 参考訳(メタデータ) (2023-01-05T15:55:18Z) - Unsupervised language models for disease variant prediction [3.6942566104432886]
広い配列のデータセットで訓練された1つのタンパク質LMは、あらゆる遺伝子変異ゼロショットに対して病原性を評価することができる。
臨床的にラベル付けされた疾患関連遺伝子の変異について評価すると,その評価性能は最先端技術に匹敵することがわかった。
論文 参考訳(メタデータ) (2022-12-07T22:28:13Z) - Structure-aware Protein Self-supervised Learning [50.04673179816619]
本稿では,タンパク質の構造情報を取得するための構造認識型タンパク質自己教師学習法を提案する。
特に、タンパク質構造情報を保存するために、よく設計されたグラフニューラルネットワーク(GNN)モデルを事前訓練する。
タンパク質言語モデルにおける逐次情報と特別に設計されたGNNモデルにおける構造情報との関係を,新しい擬似二段階最適化手法を用いて同定する。
論文 参考訳(メタデータ) (2022-04-06T02:18:41Z) - Protein Representation Learning by Geometric Structure Pretraining [27.723095456631906]
既存のアプローチは通常、多くの未ラベルアミノ酸配列で事前訓練されたタンパク質言語モデルである。
まず,タンパク質の幾何学的特徴を学習するための単純かつ効果的なエンコーダを提案する。
関数予測と折り畳み分類の両タスクの実験結果から,提案した事前学習法は,より少ないデータを用いた最先端のシーケンスベース手法と同等あるいは同等であることがわかった。
論文 参考訳(メタデータ) (2022-03-11T17:52:13Z) - EBM-Fold: Fully-Differentiable Protein Folding Powered by Energy-based
Models [53.17320541056843]
本研究では,データ駆動型生成ネットワークを用いたタンパク質構造最適化手法を提案する。
EBM-Foldアプローチは,従来のロゼッタ構造最適化ルーチンと比較して,高品質なデコイを効率よく生成できる。
論文 参考訳(メタデータ) (2021-05-11T03:40:29Z) - Deep Learning of High-Order Interactions for Protein Interface
Prediction [58.164371994210406]
本稿では,タンパク質界面の予測を2次元密度予測問題として定式化する。
タンパク質をグラフとして表現し、グラフニューラルネットワークを用いてノードの特徴を学習する。
我々は高次対相互作用を組み込んで、異なる対相互作用を含む3次元テンソルを生成する。
論文 参考訳(メタデータ) (2020-07-18T05:39:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。