論文の概要: Learning conformational ensembles of proteins based on backbone geometry
- arxiv url: http://arxiv.org/abs/2503.05738v1
- Date: Wed, 19 Feb 2025 17:16:27 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-16 09:47:29.581209
- Title: Learning conformational ensembles of proteins based on backbone geometry
- Title(参考訳): バックボーン幾何学に基づくタンパク質のコンフォメーションアンサンブルの学習
- Authors: Nicolas Wolf, Leif Seute, Vsevolod Viliuga, Simon Wagner, Jan Stühmer, Frauke Gräter,
- Abstract要約: 本稿では,背骨形状のみに基づくタンパク質コンホメーションをサンプリングするためのフローマッチングモデルを提案する。
結果として得られたモデルは、現在の最先端アプローチよりも桁違いに高速で、数日間でスクラッチからトレーニングできる。
- 参考スコア(独自算出の注目度): 1.1874952582465603
- License:
- Abstract: Deep generative models have recently been proposed for sampling protein conformations from the Boltzmann distribution, as an alternative to often prohibitively expensive Molecular Dynamics simulations. However, current state-of-the-art approaches rely on fine-tuning pre-trained folding models and evolutionary sequence information, limiting their applicability and efficiency, and introducing potential biases. In this work, we propose a flow matching model for sampling protein conformations based solely on backbone geometry. We introduce a geometric encoding of the backbone equilibrium structure as input and propose to condition not only the flow but also the prior distribution on the respective equilibrium structure, eliminating the need for evolutionary information. The resulting model is orders of magnitudes faster than current state-of-the-art approaches at comparable accuracy and can be trained from scratch in a few GPU days. In our experiments, we demonstrate that the proposed model achieves competitive performance with reduced inference time, across not only an established benchmark of naturally occurring proteins but also de novo proteins, for which evolutionary information is scarce.
- Abstract(参考訳): ボルツマン分布からタンパク質の配列をサンプリングする深層生成モデルは、しばしば高価な分子動力学シミュレーションに代わるものとして最近提案されている。
しかし、現在の最先端のアプローチは、微調整済みの折り畳みモデルと進化的シーケンス情報に依存し、適用性と効率を制限し、潜在的なバイアスを導入する。
本研究では,背骨形状のみに基づくタンパク質配列抽出のためのフローマッチングモデルを提案する。
バックボーン平衡構造の幾何学的エンコーディングを入力として導入し,フローだけでなく,各平衡構造上の先行分布も条件として提案し,進化的情報の必要性を排除した。
結果として得られたモデルは、現在の最先端アプローチよりも桁違いに高速で、数日間でスクラッチからトレーニングできる。
本実験では, 天然に存在するタンパク質だけでなく, 進化情報が乏しいデノボタンパク質のベンチマークを用いて, 推論時間を削減することで, 競合性能が向上できることを実証した。
関連論文リスト
- SFM-Protein: Integrative Co-evolutionary Pre-training for Advanced Protein Sequence Representation [97.99658944212675]
タンパク質基盤モデルのための新しい事前学習戦略を導入する。
アミノ酸残基間の相互作用を強調し、短距離および長距離の共進化的特徴の抽出を強化する。
大規模タンパク質配列データセットを用いて学習し,より優れた一般化能力を示す。
論文 参考訳(メタデータ) (2024-10-31T15:22:03Z) - Structure Language Models for Protein Conformation Generation [66.42864253026053]
伝統的な物理学に基づくシミュレーション手法は、しばしばサンプリング平衡整合に苦しむ。
深い生成モデルは、より効率的な代替としてタンパク質のコンホメーションを生成することを約束している。
本稿では,効率的なタンパク質コンホメーション生成のための新しいフレームワークとして構造言語モデリングを紹介する。
論文 参考訳(メタデータ) (2024-10-24T03:38:51Z) - Protein Conformation Generation via Force-Guided SE(3) Diffusion Models [48.48934625235448]
新しいタンパク質コンホメーションを生成するために、深層生成モデリング技術が用いられている。
本稿では,タンパク質コンフォメーション生成のための力誘導SE(3)拡散モデルConfDiffを提案する。
論文 参考訳(メタデータ) (2024-03-21T02:44:08Z) - Navigating protein landscapes with a machine-learned transferable
coarse-grained model [29.252004942896875]
同様の予測性能を持つ粗粒度(CG)モデルは、長年にわたる課題である。
ケミカルトランスポータビリティを持つボトムアップCG力場を開発し,新しい配列の分子動力学に利用することができる。
本モデルでは, 折り畳み構造, 中間体, メタスタブル折り畳み型および折り畳み型流域, 内在的に不規則なタンパク質のゆらぎの予測に成功している。
論文 参考訳(メタデータ) (2023-10-27T17:10:23Z) - Predicting protein variants with equivariant graph neural networks [0.0]
我々は,同変グラフニューラルネットワーク(EGNN)と配列に基づくアプローチによる有望なアミノ酸変異の同定能力の比較を行った。
提案する構造的アプローチは, より少ない分子で訓練しながら, 配列に基づくアプローチと競合する性能を実現する。
論文 参考訳(メタデータ) (2023-06-21T12:44:52Z) - Top-down machine learning of coarse-grained protein force-fields [2.1485350418225244]
我々の手法は、タンパク質を分子動力学でシミュレートし、その結果の軌道を利用してニューラルネットワーク電位を訓練することである。
注目すべきは、この方法はタンパク質のネイティブなコンフォメーションのみを必要とし、ラベル付きデータを必要としないことである。
マルコフ状態モデルを適用することで、シミュレーションされたタンパク質のネイティブな構造を粗い粒度のシミュレーションから予測することができる。
論文 参考訳(メタデータ) (2023-06-20T08:31:24Z) - EigenFold: Generative Protein Structure Prediction with Diffusion Models [10.24107243529341]
EigenFoldは、特定のタンパク質配列から構造分布をサンプリングする拡散生成モデリングフレームワークである。
最近のCAMEOターゲットでは、EigenFoldは0.84の中央値TMSスコアを達成し、モデルの不確実性のより包括的な画像を提供する。
論文 参考訳(メタデータ) (2023-04-05T02:46:13Z) - State-specific protein-ligand complex structure prediction with a
multi-scale deep generative model [68.28309982199902]
タンパク質-リガンド複合体構造を直接予測できる計算手法であるNeuralPLexerを提案する。
我々の研究は、データ駆動型アプローチがタンパク質と小分子の構造的協調性を捉え、酵素や薬物分子などの設計を加速させる可能性を示唆している。
論文 参考訳(メタデータ) (2022-09-30T01:46:38Z) - Learning Geometrically Disentangled Representations of Protein Folding
Simulations [72.03095377508856]
この研究は、薬物標的タンパク質の構造的アンサンブルに基づいて生成ニューラルネットワークを学習することに焦点を当てている。
モデル課題は、様々な薬物分子に結合したタンパク質の構造的変動を特徴付けることである。
その結果,我々の幾何学的学習に基づく手法は,複雑な構造変化を生成するための精度と効率の両方を享受できることがわかった。
論文 参考訳(メタデータ) (2022-05-20T19:38:00Z) - EBM-Fold: Fully-Differentiable Protein Folding Powered by Energy-based
Models [53.17320541056843]
本研究では,データ駆動型生成ネットワークを用いたタンパク質構造最適化手法を提案する。
EBM-Foldアプローチは,従来のロゼッタ構造最適化ルーチンと比較して,高品質なデコイを効率よく生成できる。
論文 参考訳(メタデータ) (2021-05-11T03:40:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。