論文の概要: Inter-Instance Similarity Modeling for Contrastive Learning
- arxiv url: http://arxiv.org/abs/2306.12243v3
- Date: Thu, 29 Jun 2023 12:14:59 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-30 16:24:46.467547
- Title: Inter-Instance Similarity Modeling for Contrastive Learning
- Title(参考訳): コントラスト学習におけるインスタンス間類似性モデリング
- Authors: Chengchao Shen, Dawei Liu, Hao Tang, Zhe Qu, Jianxin Wang
- Abstract要約: 視覚変換器(ViT)におけるコントラスト学習のための新しい画像混合手法であるPatchMixを提案する。
既存のサンプルミキシング手法と比較して、我々のPatchMixは2つ以上の画像を柔軟に効率的に混ぜることができる。
提案手法は,ImageNet-1KとCIFARの両方のデータセットにおいて,従来の最先端技術よりも大幅に優れていた。
- 参考スコア(独自算出の注目度): 22.56316444504397
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The existing contrastive learning methods widely adopt one-hot instance
discrimination as pretext task for self-supervised learning, which inevitably
neglects rich inter-instance similarities among natural images, then leading to
potential representation degeneration. In this paper, we propose a novel image
mix method, PatchMix, for contrastive learning in Vision Transformer (ViT), to
model inter-instance similarities among images. Following the nature of ViT, we
randomly mix multiple images from mini-batch in patch level to construct mixed
image patch sequences for ViT. Compared to the existing sample mix methods, our
PatchMix can flexibly and efficiently mix more than two images and simulate
more complicated similarity relations among natural images. In this manner, our
contrastive framework can significantly reduce the gap between contrastive
objective and ground truth in reality. Experimental results demonstrate that
our proposed method significantly outperforms the previous state-of-the-art on
both ImageNet-1K and CIFAR datasets, e.g., 3.0% linear accuracy improvement on
ImageNet-1K and 8.7% kNN accuracy improvement on CIFAR100. Moreover, our method
achieves the leading transfer performance on downstream tasks, object detection
and instance segmentation on COCO dataset. The code is available at
https://github.com/visresearch/patchmix
- Abstract(参考訳): 既存のコントラスト学習手法は、自然画像間のリッチなインスタンス間類似性を必然的に無視する自己教師付き学習のプリテキストタスクとして、ワンホットのインスタンス識別を広く採用している。
本論文では,視覚変換器(ViT)におけるコントラスト学習のための新しい画像混合手法であるPatchMixを提案し,画像間のインスタンス間類似性をモデル化する。
ViTの特質に従い、ミニバッチからの複数の画像をパッチレベルでランダムに混合し、ViT用の混合画像パッチシーケンスを構築する。
既存のサンプル混合法と比較して,patchmixは2枚以上の画像を柔軟かつ効率的に混合し,自然画像間のより複雑な類似性をシミュレートできる。
このように、我々のコントラスト的枠組みは、現実のコントラスト的目的と基底的真理のギャップを著しく減らすことができる。
実験の結果,提案手法は,ImageNet-1KとCIFARデータセットの双方において,画像Net-1Kの線形精度が3.0%,CIFAR100の8.7%向上した。
さらに,本手法は,下流タスクにおける先行転送性能,オブジェクト検出,COCOデータセット上のインスタンスセグメンテーションを実現する。
コードはhttps://github.com/visresearch/patchmixで入手できる。
関連論文リスト
- Enhance Image Classification via Inter-Class Image Mixup with Diffusion Model [80.61157097223058]
画像分類性能を高めるための一般的な戦略は、T2Iモデルによって生成された合成画像でトレーニングセットを増強することである。
本研究では,既存のデータ拡張技術の欠点について検討する。
Diff-Mixと呼ばれる革新的なクラス間データ拡張手法を導入する。
論文 参考訳(メタデータ) (2024-03-28T17:23:45Z) - Patch-Wise Self-Supervised Visual Representation Learning: A Fine-Grained Approach [4.9204263448542465]
本研究は、パッチレベルの識別を自己教師付き視覚表現学習に組み込むことにより、革新的できめ細かな次元を導入する。
それぞれのパッチは個別に拡張され、同じビュー内の他のパッチとは独立している。
我々は、拡張ビュー全体にわたって対応するパッチを見つけるための、単純で効果的なパッチマッチングアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-10-28T09:35:30Z) - Mixing Histopathology Prototypes into Robust Slide-Level Representations
for Cancer Subtyping [19.577541771516124]
計算病理学の手法による全スライディング画像解析は、しばしば、スライドレベルラベルのみが利用可能なテッセル化ギガピクセル画像の処理に依存している。
複数のインスタンス学習手法やトランスフォーマーモデルを適用することは、各イメージとして計算コストが高く、すべてのインスタンスを同時に処理する必要がある。
TheMixerは、特に大規模データセットにおいて、一般的なビジョントランスフォーマーの未探索の代替モデルである。
論文 参考訳(メタデータ) (2023-10-19T14:15:20Z) - Improving Human-Object Interaction Detection via Virtual Image Learning [68.56682347374422]
人間-物体相互作用(Human-Object Interaction、HOI)は、人間と物体の相互作用を理解することを目的としている。
本稿では,仮想画像学習(Virtual Image Leaning, VIL)による不均衡分布の影響を軽減することを提案する。
ラベルからイメージへの新たなアプローチであるMultiple Steps Image Creation (MUSIC)が提案され、実際の画像と一貫した分布を持つ高品質なデータセットを作成する。
論文 参考訳(メタデータ) (2023-08-04T10:28:48Z) - Mix-up Self-Supervised Learning for Contrast-agnostic Applications [33.807005669824136]
コントラストに依存しないアプリケーションのための,最初の混合型自己教師型学習フレームワークを提案する。
クロスドメイン・ミックスアップに基づく画像間の低分散に対処し、画像再構成と透明性予測に基づくプレテキストタスクを構築する。
論文 参考訳(メタデータ) (2022-04-02T16:58:36Z) - Learning Contrastive Representation for Semantic Correspondence [150.29135856909477]
セマンティックマッチングのためのマルチレベルコントラスト学習手法を提案する。
画像レベルのコントラスト学習は、畳み込み特徴が類似したオブジェクト間の対応を見出すための鍵となる要素であることを示す。
論文 参考訳(メタデータ) (2021-09-22T18:34:14Z) - Dense Contrastive Learning for Self-Supervised Visual Pre-Training [102.15325936477362]
入力画像の2つのビュー間の画素レベルでの差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分)を最適化することにより自己教師学習を実現する。
ベースライン法であるMoCo-v2と比較すると,計算オーバーヘッドは1%遅かった。
論文 参考訳(メタデータ) (2020-11-18T08:42:32Z) - Mixup-Transformer: Dynamic Data Augmentation for NLP Tasks [75.69896269357005]
Mixupは、入力例と対応するラベルを線形に補間する最新のデータ拡張技術である。
本稿では,自然言語処理タスクにmixupを適用する方法について検討する。
我々は、様々なNLPタスクに対して、mixup-transformerと呼ばれる、トランスフォーマーベースの事前学習アーキテクチャにmixupを組み込んだ。
論文 参考訳(メタデータ) (2020-10-05T23:37:30Z) - Un-Mix: Rethinking Image Mixtures for Unsupervised Visual Representation
Learning [108.999497144296]
近年の先進的な教師なし学習手法では,同じ画像から2つの「ビュー」を学習表現として比較するために,サイムズ様の枠組みを用いている。
この研究は、教師なし学習においてラベル空間上の距離の概念を巻き込み、正対と負対のソフトな類似度をモデルに認識させることを目的としている。
その概念的単純さにもかかわらず、この解 -- 教師なし画像混合(Un-Mix)により、変換された入力と対応する新しいラベル空間からより微妙でより堅牢で一般化された表現を学習できることを実証的に示す。
論文 参考訳(メタデータ) (2020-03-11T17:59:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。