論文の概要: Mixing Histopathology Prototypes into Robust Slide-Level Representations
for Cancer Subtyping
- arxiv url: http://arxiv.org/abs/2310.12769v1
- Date: Thu, 19 Oct 2023 14:15:20 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-20 15:07:31.420457
- Title: Mixing Histopathology Prototypes into Robust Slide-Level Representations
for Cancer Subtyping
- Title(参考訳): 癌サブタイピングのためのロバストスライドレベル表現への組織学的プロトタイプの混合
- Authors: Joshua Butke, Noriaki Hashimoto, Ichiro Takeuchi, Hiroaki Miyoshi,
Koichi Ohshima, Jun Sakuma
- Abstract要約: 計算病理学の手法による全スライディング画像解析は、しばしば、スライドレベルラベルのみが利用可能なテッセル化ギガピクセル画像の処理に依存している。
複数のインスタンス学習手法やトランスフォーマーモデルを適用することは、各イメージとして計算コストが高く、すべてのインスタンスを同時に処理する必要がある。
TheMixerは、特に大規模データセットにおいて、一般的なビジョントランスフォーマーの未探索の代替モデルである。
- 参考スコア(独自算出の注目度): 19.577541771516124
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Whole-slide image analysis via the means of computational pathology often
relies on processing tessellated gigapixel images with only slide-level labels
available. Applying multiple instance learning-based methods or transformer
models is computationally expensive as, for each image, all instances have to
be processed simultaneously. The MLP-Mixer is an under-explored alternative
model to common vision transformers, especially for large-scale datasets. Due
to the lack of a self-attention mechanism, they have linear computational
complexity to the number of input patches but achieve comparable performance on
natural image datasets. We propose a combination of feature embedding and
clustering to preprocess the full whole-slide image into a reduced prototype
representation which can then serve as input to a suitable MLP-Mixer
architecture. Our experiments on two public benchmarks and one inhouse
malignant lymphoma dataset show comparable performance to current
state-of-the-art methods, while achieving lower training costs in terms of
computational time and memory load. Code is publicly available at
https://github.com/butkej/ProtoMixer.
- Abstract(参考訳): 計算病理学の手法による全スライディング画像解析は、しばしば、スライドレベルラベルのみが利用可能なテッセル化ギガピクセル画像の処理に依存する。
複数のインスタンス学習ベースのメソッドやトランスフォーマーモデルを適用すれば、各イメージに対して、すべてのインスタンスを同時に処理する必要があるため、計算コストがかかる。
mlp-mixerは、一般的なビジョントランスフォーマー、特に大規模データセットの代替モデルである。
自己アテンション機構が欠如しているため、入力パッチの数に対して線形計算の複雑さがあるが、自然な画像データセットで同等のパフォーマンスを実現する。
本稿では,機能埋め込みとクラスタリングを組み合わせることで,全スライディング画像をプロトタイプ表現にプリプロセスし,適切なMLP-Mixerアーキテクチャの入力として機能させる。
2つの公開ベンチマークと1つの内在性悪性リンパ腫データセットによる実験は、現在の最先端手法に匹敵する性能を示しながら、計算時間とメモリ負荷の面でのトレーニングコストの低減を実現している。
コードはhttps://github.com/butkej/protomixerで公開されている。
関連論文リスト
- A Simple and Robust Framework for Cross-Modality Medical Image
Segmentation applied to Vision Transformers [0.0]
単一条件モデルを用いて複数モードの公平な画像分割を実現するための簡単なフレームワークを提案する。
本研究の枠組みは,マルチモーダル全心条件課題において,他のモダリティセグメンテーション手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2023-10-09T09:51:44Z) - Inter-Instance Similarity Modeling for Contrastive Learning [22.56316444504397]
視覚変換器(ViT)におけるコントラスト学習のための新しい画像混合手法であるPatchMixを提案する。
既存のサンプルミキシング手法と比較して、我々のPatchMixは2つ以上の画像を柔軟に効率的に混ぜることができる。
提案手法は,ImageNet-1KとCIFARの両方のデータセットにおいて,従来の最先端技術よりも大幅に優れていた。
論文 参考訳(メタデータ) (2023-06-21T13:03:47Z) - Cascaded Cross-Attention Networks for Data-Efficient Whole-Slide Image
Classification Using Transformers [0.11219061154635457]
全スライディングイメージングは、組織標本の高解像度画像のキャプチャとデジタル化を可能にする。
高解像度情報を効果的に活用するための候補としてトランスフォーマーアーキテクチャが提案されている。
本稿では,抽出されたパッチ数と線形にスケールするクロスアテンション機構に基づく新しいカスケード型クロスアテンションネットワーク(CCAN)を提案する。
論文 参考訳(メタデータ) (2023-05-11T16:42:24Z) - Unicom: Universal and Compact Representation Learning for Image
Retrieval [65.96296089560421]
大規模LAION400Mを,CLIPモデルにより抽出された共同テキストと視覚的特徴に基づいて,100万の擬似クラスにクラスタリングする。
このような矛盾を緩和するために、我々は、マージンベースのソフトマックス損失を構築するために、ランダムにクラス間の部分的なプロトタイプを選択する。
提案手法は,複数のベンチマークにおいて,教師なし,教師なしの画像検索手法よりも優れていた。
論文 参考訳(メタデータ) (2023-04-12T14:25:52Z) - Multi-scale Transformer Network with Edge-aware Pre-training for
Cross-Modality MR Image Synthesis [52.41439725865149]
クロスモダリティ磁気共鳴(MR)画像合成は、与えられたモダリティから欠落するモダリティを生成するために用いられる。
既存の(教師付き学習)手法は、効果的な合成モデルを訓練するために、多くのペア化されたマルチモーダルデータを必要とすることが多い。
マルチスケールトランスフォーマーネットワーク(MT-Net)を提案する。
論文 参考訳(メタデータ) (2022-12-02T11:40:40Z) - CropMix: Sampling a Rich Input Distribution via Multi-Scale Cropping [97.05377757299672]
そこで本研究では,元のデータセット分布からリッチな入力分布を生成するための簡単なCropMixを提案する。
CropMixは、分類タスクを実行するトレーニングレシピやニューラルネットワークアーキテクチャにシームレスに適用することができる。
CropMixは、より強力な表現に向けて、対照的な学習とマスクされた画像モデリングの両方に利益があることを示す。
論文 参考訳(メタデータ) (2022-05-31T16:57:28Z) - A Hierarchical Transformation-Discriminating Generative Model for Few
Shot Anomaly Detection [93.38607559281601]
各トレーニングイメージのマルチスケールパッチ分布をキャプチャする階層的生成モデルを開発した。
この異常スコアは、スケール及び画像領域にわたる正しい変換のパッチベースの投票を集約して得られる。
論文 参考訳(メタデータ) (2021-04-29T17:49:48Z) - Learning Ultrasound Rendering from Cross-Sectional Model Slices for
Simulated Training [13.640630434743837]
計算シミュレーションは、バーチャルリアリティーにおけるそのようなスキルの訓練を容易にする。
インタラクティブな時間に任意のレンダリングやシミュレーションプロセスをバイパスするためにここに提案します。
我々は、専用のジェネレータアーキテクチャと入力供給方式を備えた生成的対向フレームワークを使用する。
論文 参考訳(メタデータ) (2021-01-20T21:58:19Z) - Mixup-Transformer: Dynamic Data Augmentation for NLP Tasks [75.69896269357005]
Mixupは、入力例と対応するラベルを線形に補間する最新のデータ拡張技術である。
本稿では,自然言語処理タスクにmixupを適用する方法について検討する。
我々は、様々なNLPタスクに対して、mixup-transformerと呼ばれる、トランスフォーマーベースの事前学習アーキテクチャにmixupを組み込んだ。
論文 参考訳(メタデータ) (2020-10-05T23:37:30Z) - Locally Masked Convolution for Autoregressive Models [107.4635841204146]
LMConvは標準的な2Dコンボリューションの簡単な修正であり、任意のマスクを画像の各位置の重みに適用することができる。
我々は,パラメータを共有するが生成順序が異なる分布推定器のアンサンブルを学習し,全画像密度推定の性能を向上させる。
論文 参考訳(メタデータ) (2020-06-22T17:59:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。