論文の概要: PriorBand: Practical Hyperparameter Optimization in the Age of Deep
Learning
- arxiv url: http://arxiv.org/abs/2306.12370v2
- Date: Wed, 15 Nov 2023 17:06:57 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-16 20:27:25.415072
- Title: PriorBand: Practical Hyperparameter Optimization in the Age of Deep
Learning
- Title(参考訳): priorband: ディープラーニング時代の実用的なハイパーパラメータ最適化
- Authors: Neeratyoy Mallik and Edward Bergman and Carl Hvarfner and Danny Stoll
and Maciej Janowski and Marius Lindauer and Luigi Nardi and Frank Hutter
- Abstract要約: 我々は,Deep Learning(DL)パイプラインに適したHPOアルゴリズムであるPresideBandを提案する。
各種のDLベンチマークでその堅牢性を示し、情報的専門家のインプットと、専門家の信条の低さに対してその利得を示す。
- 参考スコア(独自算出の注目度): 49.92394599459274
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Hyperparameters of Deep Learning (DL) pipelines are crucial for their
downstream performance. While a large number of methods for Hyperparameter
Optimization (HPO) have been developed, their incurred costs are often
untenable for modern DL. Consequently, manual experimentation is still the most
prevalent approach to optimize hyperparameters, relying on the researcher's
intuition, domain knowledge, and cheap preliminary explorations. To resolve
this misalignment between HPO algorithms and DL researchers, we propose
PriorBand, an HPO algorithm tailored to DL, able to utilize both expert beliefs
and cheap proxy tasks. Empirically, we demonstrate PriorBand's efficiency
across a range of DL benchmarks and show its gains under informative expert
input and robustness against poor expert beliefs
- Abstract(参考訳): ディープラーニング(DL)パイプラインのハイパーパラメータは、下流のパフォーマンスに不可欠である。
ハイパーパラメータ最適化(HPO)のための多くの手法が開発されているが、現代のDLではそのコストは抑えられないことが多い。
結果として、手動の実験は、研究者の直観、ドメイン知識、安価な予備探索に頼りながら、ハイパーパラメーターを最適化する最も一般的なアプローチである。
そこで本研究では,HPOアルゴリズムとDL研究者のミスアライメントを解決するために,DLに適したHPOアルゴリズムであるPresideBandを提案する。
実証的に、さまざまなDLベンチマークでPresideBandの効率を実証し、有意義な専門家のインプットと貧弱な専門家の信念に対する頑健さの下でその利益を示す。
関連論文リスト
- The Hitchhiker's Guide to Human Alignment with *PO [43.4130314879284]
我々は,高次パラメータの変動に対して同時に頑健であるアルゴリズムの同定に焦点をあてる。
解析の結果,広範に採用されているDPO法は,品質が劣る長大な応答を連続的に生成することがわかった。
これらの結果から,DPOアルゴリズムであるLN-DPOの精度が向上し,品質を損なうことなく,より簡潔な応答が得られることが示唆された。
論文 参考訳(メタデータ) (2024-07-21T17:35:20Z) - On the consistency of hyper-parameter selection in value-based deep reinforcement learning [13.133865673667394]
本稿では,値に基づく深層強化学習エージェントのハイパーパラメータ選択の信頼性に着目した実証的研究を行う。
我々の研究は、どのハイパーパラメーターがチューニングに最も重要かを確立するのに役立ち、どのチューニングが異なるトレーニング体制間で一貫性を持ち続けるかを明らかにするのに役立ちます。
論文 参考訳(メタデータ) (2024-06-25T13:06:09Z) - A Deep Dive into the Trade-Offs of Parameter-Efficient Preference Alignment Techniques [63.10251271444959]
大規模言語モデルは最初、数兆のトークンで事前訓練され、その後、特定の好みに合わせて命令調整または調整される。
我々は,3つの重要な軸に対する人気選択の影響を詳細に調査する。
300以上の実験にまたがるセットアップでは、一貫した傾向と予期せぬ結果が明らかになる。
論文 参考訳(メタデータ) (2024-06-07T12:25:51Z) - Interactive Hyperparameter Optimization in Multi-Objective Problems via
Preference Learning [65.51668094117802]
我々は多目的機械学習(ML)に適した人間中心型対話型HPO手法を提案する。
ユーザが自分のニーズに最も適した指標を推測する代わりに、私たちのアプローチは自動的に適切な指標を学習します。
論文 参考訳(メタデータ) (2023-09-07T09:22:05Z) - Hyperparameters in Reinforcement Learning and How To Tune Them [25.782420501870295]
深層強化学習におけるハイパーパラメータの選択は,エージェントの最終的な性能とサンプル効率に大きな影響を及ぼすことを示す。
我々は,シードのチューニングとテストの分離など,AutoMLから確立されたベストプラクティスを採用することを提案する。
我々は、最先端のHPOツールを、RLアルゴリズムや環境を手作りのツールと比較することで、これをサポートする。
論文 参考訳(メタデータ) (2023-06-02T07:48:18Z) - A New Linear Scaling Rule for Private Adaptive Hyperparameter Optimization [57.450449884166346]
本稿では,HPOのプライバシコストを考慮した適応型HPO法を提案する。
我々は22のベンチマークタスク、コンピュータビジョンと自然言語処理、事前学習と微調整で最先端のパフォーマンスを得る。
論文 参考訳(メタデータ) (2022-12-08T18:56:37Z) - Towards Learning Universal Hyperparameter Optimizers with Transformers [57.35920571605559]
我々は,テキストベースのトランスフォーマーHPOフレームワークであるOptFormerを紹介した。
実験の結果,OptFormerは少なくとも7種類のHPOアルゴリズムを模倣できることがわかった。
論文 参考訳(メタデータ) (2022-05-26T12:51:32Z) - Efficient Hyperparameter Optimization for Differentially Private Deep
Learning [1.7205106391379026]
望ましいプライバシーとユーティリティのトレードオフを確立するための一般的な最適化フレームワークを定式化します。
提案手法では,進化的,ベイズ的,強化学習の3つの費用対効果アルゴリズムについて検討する。
私たちの研究がプライベートなディープラーニングのパイプラインで活用できると信じているので、コードをhttps://github.com/AmanPriyanshu/DP-HyperparamTuning.comに公開しています。
論文 参考訳(メタデータ) (2021-08-09T09:18:22Z) - Hyperparameter Optimization: Foundations, Algorithms, Best Practices and
Open Challenges [5.139260825952818]
本稿では,グリッドやランダム検索,進化アルゴリズム,ベイズ最適化,ハイパーバンド,レースなどの重要なHPO手法について述べる。
HPOアルゴリズム自体、パフォーマンス評価、HPOとMLパイプラインの結合方法、ランタイムの改善、並列化など、HPOの実行時に行うべき重要な選択について、実用的なレコメンデーションを提供する。
論文 参考訳(メタデータ) (2021-07-13T04:55:47Z) - Cost-Efficient Online Hyperparameter Optimization [94.60924644778558]
実験の単一実行でヒトのエキスパートレベルのパフォーマンスに達するオンラインHPOアルゴリズムを提案します。
提案するオンラインhpoアルゴリズムは,実験の1回で人間のエキスパートレベルのパフォーマンスに到達できるが,通常のトレーニングに比べて計算オーバーヘッドは少ない。
論文 参考訳(メタデータ) (2021-01-17T04:55:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。