論文の概要: HyperQ-Opt: Q-learning for Hyperparameter Optimization
- arxiv url: http://arxiv.org/abs/2412.17765v1
- Date: Mon, 23 Dec 2024 18:22:34 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-24 15:57:01.445069
- Title: HyperQ-Opt: Q-learning for Hyperparameter Optimization
- Title(参考訳): HyperQ-Opt:ハイパーパラメータ最適化のためのQラーニング
- Authors: Md. Tarek Hasan,
- Abstract要約: 本稿では,HPOを逐次決定問題として定式化し,強化学習技術であるQ-ラーニングを活用することにより,HPOに対する新たな視点を示す。
これらのアプローチは、限られた試行数で最適または準最適構成を見つける能力について評価されている。
このパラダイムをポリシーベースの最適化にシフトすることで、スケーラブルで効率的な機械学習アプリケーションのためのHPOメソッドの進歩に寄与する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Hyperparameter optimization (HPO) is critical for enhancing the performance of machine learning models, yet it often involves a computationally intensive search across a large parameter space. Traditional approaches such as Grid Search and Random Search suffer from inefficiency and limited scalability, while surrogate models like Sequential Model-based Bayesian Optimization (SMBO) rely heavily on heuristic predictions that can lead to suboptimal results. This paper presents a novel perspective on HPO by formulating it as a sequential decision-making problem and leveraging Q-learning, a reinforcement learning technique, to optimize hyperparameters. The study explores the works of H.S. Jomaa et al. and Qi et al., which model HPO as a Markov Decision Process (MDP) and utilize Q-learning to iteratively refine hyperparameter settings. The approaches are evaluated for their ability to find optimal or near-optimal configurations within a limited number of trials, demonstrating the potential of reinforcement learning to outperform conventional methods. Additionally, this paper identifies research gaps in existing formulations, including the limitations of discrete search spaces and reliance on heuristic policies, and suggests avenues for future exploration. By shifting the paradigm toward policy-based optimization, this work contributes to advancing HPO methods for scalable and efficient machine learning applications.
- Abstract(参考訳): ハイパーパラメータ最適化(HPO)は、機械学習モデルの性能を高めるために重要であるが、大きなパラメータ空間にわたる計算集約的な探索を伴うことが多い。
グリッドサーチやランダムサーチのような従来のアプローチは非効率性とスケーラビリティの制限に悩まされており、シークエンシャルモデルベースのベイズ最適化(SMBO)のようなサロゲートモデルは、最適な結果につながるヒューリスティックな予測に大きく依存している。
本稿では,HPOを逐次決定問題として定式化し,強化学習技術であるQ-ラーニングを活用してハイパーパラメータを最適化することで,HPOの新たな視点を示す。
H.S. Jomaa et alとQi et alはHPOをマルコフ決定過程(MDP)としてモデル化し、Qラーニングを用いて高パラメータ設定を反復的に洗練する。
提案手法は, 限られた試行数で最適あるいは準最適構成を求める能力について評価し, 従来の手法より優れた強化学習の可能性を示した。
さらに,離散的な探索空間の限界やヒューリスティックな政策への依存など,既存の定式化における研究ギャップを明らかにし,今後の探索への道筋を提案する。
このパラダイムをポリシーベースの最適化にシフトすることで、スケーラブルで効率的な機械学習アプリケーションのためのHPOメソッドの進歩に寄与する。
関連論文リスト
- Hierarchical Preference Optimization: Learning to achieve goals via feasible subgoals prediction [71.81851971324187]
本研究は階層型強化学習(HRL)の新しいアプローチである階層型優先度最適化(HPO)を導入する。
HPOは、複雑なロボット制御タスクを解く際に、非定常性と非実用的なサブゴール生成の問題に対処する。
挑戦的なロボットナビゲーションと操作タスクの実験はHPOの素晴らしいパフォーマンスを示しており、ベースラインよりも最大35%改善されている。
論文 参考訳(メタデータ) (2024-11-01T04:58:40Z) - Enhancing Multi-Step Reasoning Abilities of Language Models through Direct Q-Function Optimization [50.485788083202124]
強化学習(Reinforcement Learning, RL)は、大規模言語モデルを人間の好みと整合させ、複雑なタスクを遂行する能力を向上させる上で重要な役割を担っている。
反応生成過程をマルコフ決定プロセス(MDP)として定式化し,ソフトアクター・クリティック(SAC)フレームワークを用いて,言語モデルによって直接パラメータ化されたQ関数を最適化する,直接Q関数最適化(DQO)を提案する。
GSM8KとMATHという2つの数学問題解決データセットの実験結果から、DQOは従来の手法よりも優れており、言語モデルを整合させるための有望なオフライン強化学習手法として確立されている。
論文 参考訳(メタデータ) (2024-10-11T23:29:20Z) - End-to-End Learning for Fair Multiobjective Optimization Under
Uncertainty [55.04219793298687]
機械学習における予測-Then-Forecast(PtO)パラダイムは、下流の意思決定品質を最大化することを目的としている。
本稿では,PtO法を拡張して,OWA(Nondifferentiable Ordered Weighted Averaging)の目的を最適化する。
この結果から,不確実性の下でのOWA関数の最適化とパラメトリック予測を効果的に統合できることが示唆された。
論文 参考訳(メタデータ) (2024-02-12T16:33:35Z) - Hyperparameter Optimization for Multi-Objective Reinforcement Learning [0.27309692684728615]
強化学習(Reinforcement Learning, RL)は、複雑な問題に対処するための強力なアプローチである。
近年,多目的強化学習(MORL)の導入により,RLの範囲が拡大した。
実際には、このタスクは難しいことがしばしば証明され、これらのテクニックのデプロイが失敗に終わる。
論文 参考訳(メタデータ) (2023-10-25T09:17:25Z) - Deep Ranking Ensembles for Hyperparameter Optimization [9.453554184019108]
本稿では,メタ学習型ニューラルネットワークが構成性能のランク付けに最適化され,アンサンブルによる不確実性をモデル化する手法を提案する。
12のベースライン、16のHPO検索スペース、86のデータセット/タスクからなる大規模実験プロトコルにおいて、本手法がHPOの新たな最先端結果を実現することを示す。
論文 参考訳(メタデータ) (2023-03-27T13:52:40Z) - Hyperparameter optimization, quantum-assisted model performance
prediction, and benchmarking of AI-based High Energy Physics workloads using
HPC [0.0]
本研究は,高性能コンピューティングシステムにおいてHPOプロセスを支援するために,モデル性能予測を利用する可能性について検討する。
量子アニールは性能予測器の訓練に用いられ、量子系の現在の限界から生じる問題を克服する手法が提案されている。
衝突イベント再構成のためのAIモデルに基づくコンテナ化されたベンチマークの開発から結果が提示される。
論文 参考訳(メタデータ) (2023-03-27T09:55:33Z) - Quantum Machine Learning hyperparameter search [0.0]
航空会社の予測問題に関連するデータセット上で訓練されたモデルのベンチマークを評価する。
提案手法は,与えられた探索空間の精度と収束速度の観点から,従来のハイパーパラメータ最適化手法より優れている。
本研究は,量子ベース機械学習ハイパーパラメータ最適化における今後の研究に向けた新たな方向性を提供する。
論文 参考訳(メタデータ) (2023-02-20T20:41:31Z) - Towards Learning Universal Hyperparameter Optimizers with Transformers [57.35920571605559]
我々は,テキストベースのトランスフォーマーHPOフレームワークであるOptFormerを紹介した。
実験の結果,OptFormerは少なくとも7種類のHPOアルゴリズムを模倣できることがわかった。
論文 参考訳(メタデータ) (2022-05-26T12:51:32Z) - A survey on multi-objective hyperparameter optimization algorithms for
Machine Learning [62.997667081978825]
本稿では,多目的HPOアルゴリズムに関する2014年から2020年にかけての文献を体系的に調査する。
メタヒューリスティック・ベース・アルゴリズムとメタモデル・ベース・アルゴリズム,および両者を混合したアプローチを区別する。
また,多目的HPO法と今後の研究方向性を比較するための品質指標についても論じる。
論文 参考訳(メタデータ) (2021-11-23T10:22:30Z) - An Asymptotically Optimal Multi-Armed Bandit Algorithm and
Hyperparameter Optimization [48.5614138038673]
本稿では,高パラメータ探索評価のシナリオにおいて,SS (Sub-Sampling) と呼ばれる効率的で堅牢な帯域幅に基づくアルゴリズムを提案する。
また,BOSSと呼ばれる新しいパラメータ最適化アルゴリズムを開発した。
実験的な研究は、SSの理論的議論を検証し、多くのアプリケーションにおけるBOSSの優れた性能を実証する。
論文 参考訳(メタデータ) (2020-07-11T03:15:21Z) - Hyper-Parameter Optimization: A Review of Algorithms and Applications [14.524227656147968]
本稿では,自動ハイパーパラメータ最適化(HPO)における最も重要なトピックについて概説する。
この研究は主要な最適化アルゴリズムとその適用性に焦点を当て、特にディープラーニングネットワークの効率と精度をカバーしている。
本稿では,HPOをディープラーニングに適用する際の問題点,最適化アルゴリズムの比較,および限られた計算資源を用いたモデル評価における顕著なアプローチについて述べる。
論文 参考訳(メタデータ) (2020-03-12T10:12:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。