論文の概要: M-VAAL: Multimodal Variational Adversarial Active Learning for
Downstream Medical Image Analysis Tasks
- arxiv url: http://arxiv.org/abs/2306.12376v1
- Date: Wed, 21 Jun 2023 16:40:37 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-22 12:39:17.520787
- Title: M-VAAL: Multimodal Variational Adversarial Active Learning for
Downstream Medical Image Analysis Tasks
- Title(参考訳): M-VAAL:下流医用画像解析タスクのためのマルチモーダル変分適応型能動学習
- Authors: Bidur Khanal, Binod Bhattarai, Bishesh Khanal, Danail Stoyanov,
Cristian A. Linte
- Abstract要約: アクティブラーニングは、アノテーションの最も有益な例を積極的にサンプリングすることで、大きな注釈付きサンプルの必要性を最小化しようとする。
本稿では,付加的なモーダルからの補助情報を用いてアクティブサンプリングを強化するマルチモーダル変分適応型アクティブラーニング(M-VAAL)手法を提案する。
- 参考スコア(独自算出の注目度): 16.85572580186212
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Acquiring properly annotated data is expensive in the medical field as it
requires experts, time-consuming protocols, and rigorous validation. Active
learning attempts to minimize the need for large annotated samples by actively
sampling the most informative examples for annotation. These examples
contribute significantly to improving the performance of supervised machine
learning models, and thus, active learning can play an essential role in
selecting the most appropriate information in deep learning-based diagnosis,
clinical assessments, and treatment planning. Although some existing works have
proposed methods for sampling the best examples for annotation in medical image
analysis, they are not task-agnostic and do not use multimodal auxiliary
information in the sampler, which has the potential to increase robustness.
Therefore, in this work, we propose a Multimodal Variational Adversarial Active
Learning (M-VAAL) method that uses auxiliary information from additional
modalities to enhance the active sampling. We applied our method to two
datasets: i) brain tumor segmentation and multi-label classification using the
BraTS2018 dataset, and ii) chest X-ray image classification using the
COVID-QU-Ex dataset. Our results show a promising direction toward
data-efficient learning under limited annotations.
- Abstract(参考訳): 適切な注釈付きデータの取得は、専門家、時間消費プロトコル、厳格な検証を必要とするため、医療分野では高価である。
アクティブラーニングは、アノテーションの最も有益な例を積極的にサンプリングすることで、大きな注釈付きサンプルの必要性を最小化しようとする。
これらの例は、教師付き機械学習モデルの性能向上に大きく寄与し、ディープラーニングに基づく診断、臨床評価、治療計画において最も適切な情報を選択する上で、アクティブラーニングが不可欠な役割を果たす。
医用画像解析におけるアノテーションの最良の例をサンプリングする手法が提案されているが、それらはタスクに依存しず、サンプル装置にマルチモーダル補助情報を使用しておらず、堅牢性を高める可能性がある。
そこで本研究では,付加的なモダリティからの補助情報を用いて,アクティブサンプリングを強化するマルチモーダル変分適応型アクティブラーニング(M-VAAL)手法を提案する。
提案手法を2つのデータセットに適用した。
一 BraTS2018データセットを用いた脳腫瘍の分類及び多ラベル分類及び
二 COVID-QU-Exデータセットを用いた胸部X線画像分類。
本研究は限定的なアノテーションによるデータ効率のよい学習に向けた有望な方向性を示す。
関連論文リスト
- DALSA: Domain Adaptation for Supervised Learning From Sparsely Annotated
MR Images [2.352695945685781]
そこで本研究では,自動腫瘍セグメンテーションのための教師あり学習において,スパースアノテーションによるサンプル選択誤差を補正するトランスファーラーニング手法を提案する。
提案手法は,スパースおよび曖昧なアノテーションから,異なる組織クラスに対する高品質な分類法を導出する。
完全ラベル付きデータを用いたトレーニングと比較して, ラベル付け時間とトレーニング時間は, 精度を犠牲にすることなく, 70倍, 180倍に短縮した。
論文 参考訳(メタデータ) (2024-03-12T09:17:21Z) - Temporal Output Discrepancy for Loss Estimation-based Active Learning [65.93767110342502]
ラベルのないサンプルが高損失を伴っていると信じられている場合に,データアノテーションのオラクルに問い合わせる,新しいディープラーニングアプローチを提案する。
本手法は,画像分類やセマンティックセグメンテーションタスクにおける最先端の能動学習手法よりも優れた性能を実現する。
論文 参考訳(メタデータ) (2022-12-20T19:29:37Z) - ALLSH: Active Learning Guided by Local Sensitivity and Hardness [98.61023158378407]
本稿では,局所感度と硬度認識獲得機能を備えたラベル付きサンプルの検索を提案する。
本手法は,様々な分類タスクにおいてよく用いられるアクティブラーニング戦略よりも一貫した利得が得られる。
論文 参考訳(メタデータ) (2022-05-10T15:39:11Z) - Interpretability-Driven Sample Selection Using Self Supervised Learning
For Disease Classification And Segmentation [4.898744396854313]
解釈可能なサリエンシーマップに含まれる情報を活用した深層特徴に基づく新しいサンプル選択手法を提案する。
提案手法は, より少ないサンプルで, アートパフォーマンスの状態を導く情報的サンプルの選択において, 他の手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2021-04-13T10:46:33Z) - Active learning for medical code assignment [55.99831806138029]
臨床領域における多ラベルテキスト分類におけるアクティブラーニング(AL)の有効性を示す。
MIMIC-IIIデータセットにICD-9コードを自動的に割り当てるために、よく知られたALメソッドのセットを適用します。
その結果、有益なインスタンスの選択は、大幅に減少したトレーニングセットで満足のいく分類を提供する。
論文 参考訳(メタデータ) (2021-04-12T18:11:17Z) - Active Selection of Classification Features [0.0]
人口統計などの補助的データは、最も有益なMRIスキャンを持つ個人を含む小さなサンプルを選択するのに役立ちます。
本研究では,2つの実用的手法を提案し,その性能を3つの実世界のベンチマークデータセットで評価する。
論文 参考訳(メタデータ) (2021-02-26T18:19:08Z) - DSAL: Deeply Supervised Active Learning from Strong and Weak Labelers
for Biomedical Image Segmentation [13.707848142719424]
アクティブ学習とセミスーパーバイザー学習戦略を組み合わせた深層アクティブセミスーパーバイザー学習フレームワークDSALを提案します。
DSALでは, 深層監視機構に基づく新たな基準が提案され, 高い不確実性を有する情報サンプルを選定する。
提案した基準を用いて,強ラベルと弱ラベルのサンプルを選択し,各アクティブな学習イテレーションにおいて,オラクルラベルと擬似ラベルを同時に生成する。
論文 参考訳(メタデータ) (2021-01-22T11:31:33Z) - Diminishing Uncertainty within the Training Pool: Active Learning for
Medical Image Segmentation [6.3858225352615285]
医用画像データセットのセグメンテーション作業におけるアクティブラーニングについて検討する。
トレーニングデータセットをバイアスする不確実データの頻度の増大、入力画像間の相互情報を正規化として利用すること、およびスタイン変動勾配降下(SVGD)のためのダイスログの類似性(Dice log-likelihood)の適応という3つの新しいアクティブ学習戦略を提案する。
その結果、データセット毎に利用可能なデータの22.69 %と48.85 %をそれぞれ使用しながら、完全な精度を達成することで、データ削減の観点での改善が示された。
論文 参考訳(メタデータ) (2021-01-07T01:55:48Z) - Select-ProtoNet: Learning to Select for Few-Shot Disease Subtype
Prediction [55.94378672172967]
本研究は, 類似患者のサブグループを同定し, 数発の疾患のサブタイプ予測問題に焦点を当てた。
新しいモデルを開発するためにメタラーニング技術を導入し、関連する臨床課題から共通の経験や知識を抽出する。
我々の新しいモデルは、単純だが効果的なメタ学習マシンであるPrototypeal Networkと呼ばれる、慎重に設計されたメタラーナーに基づいて構築されている。
論文 参考訳(メタデータ) (2020-09-02T02:50:30Z) - Self-Training with Improved Regularization for Sample-Efficient Chest
X-Ray Classification [80.00316465793702]
挑戦的なシナリオで堅牢なモデリングを可能にするディープラーニングフレームワークを提案する。
その結果,85%のラベル付きデータを用いて,大規模データ設定で学習した分類器の性能に適合する予測モデルを構築することができた。
論文 参考訳(メタデータ) (2020-05-03T02:36:00Z) - Confident Coreset for Active Learning in Medical Image Analysis [57.436224561482966]
本稿では,情報的サンプルを効果的に選択するための,不確実性と分散性を考慮した新しい能動的学習手法である信頼コアセットを提案する。
2つの医用画像解析タスクの比較実験により,本手法が他の活動的学習方法より優れていることを示す。
論文 参考訳(メタデータ) (2020-04-05T13:46:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。