Dynamics of charge fluctuations from asymmetric initial states
- URL: http://arxiv.org/abs/2306.12404v3
- Date: Wed, 29 May 2024 15:02:16 GMT
- Title: Dynamics of charge fluctuations from asymmetric initial states
- Authors: Bruno Bertini, Katja Klobas, Mario Collura, Pasquale Calabrese, Colin Rylands,
- Abstract summary: We study the dynamics of the fluctuations of conserved U(1) charges in systems that are prepared in charge-asymmetric initial states.
We show that, even though the initial states considered are homogeneous in space, the charge fluctuations generate an effective inhomogeneity due to the charge-asymmetric nature of the initial states.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Conserved-charge densities are very special observables in quantum many-body systems as, by construction, they encode information about the dynamics. Therefore, their evolution is expected to be of much simpler interpretation than that of generic observables and to return universal information on the state of the system at any given time. Here we study the dynamics of the fluctuations of conserved U(1) charges in systems that are prepared in charge-asymmetric initial states. We characterise the charge fluctuations in a given subsystem using the full-counting statistics of the truncated charge and the quantum entanglement between the subsystem and the rest resolved to the symmetry sectors of the charge. We show that, even though the initial states considered are homogeneous in space, the charge fluctuations generate an effective inhomogeneity due to the charge-asymmetric nature of the initial states. We use this observation to map the problem into that of charge fluctuations on inhomogeneous, charge-symmetric states and treat it using a recently developed space-time duality approach. Specialising the treatment to interacting integrable systems we combine the space-time duality approach with generalised hydrodynamics to find explicit predictions.
Related papers
- Measurement-induced transitions for interacting fermions [43.04146484262759]
We develop a field-theoretical framework that provides a unified approach to observables characterizing entanglement and charge fluctuations.
Within this framework, we derive a replicated Keldysh non-linear sigma model (NLSM)
By using the renormalization-group approach for the NLSM, we determine the phase diagram and the scaling of physical observables.
arXiv Detail & Related papers (2024-10-09T18:00:08Z) - Non-equilibrium dynamics of charged dual-unitary circuits [44.99833362998488]
interplay between symmetries and entanglement in out-of-equilibrium quantum systems is currently at the centre of an intense multidisciplinary research effort.
We show that one can introduce a class of solvable states, which extends that of generic dual unitary circuits.
In contrast to the known class of solvable states, which relax to the infinite temperature state, these states relax to a family of non-trivial generalised Gibbs ensembles.
arXiv Detail & Related papers (2024-07-31T17:57:14Z) - Translation symmetry restoration under random unitary dynamics [0.0]
We study how certain symmetries of the dynamics that are broken by the initial state are restored at the level of the reduced state of a given subsystem.
Here we show that that the same logic can be applied to the restoration of space-time symmetries, and hence can be used to characterise the relaxation of fully generic systems.
arXiv Detail & Related papers (2024-06-06T17:40:22Z) - Three perspectives on entropy dynamics in a non-Hermitian two-state system [41.94295877935867]
entropy dynamics as an indicator of physical behavior in an open two-state system with balanced gain and loss is presented.
We distinguish the perspective taken in utilizing the conventional framework of Hermitian-adjoint states from an approach that is based on biorthogonal-adjoint states and a third case based on an isospectral mapping.
arXiv Detail & Related papers (2024-04-04T14:45:28Z) - Entanglement and localization in long-range quadratic Lindbladians [49.1574468325115]
Signatures of localization have been observed in condensed matter and cold atomic systems.
We propose a model of one-dimensional chain of non-interacting, spinless fermions coupled to a local ensemble of baths.
We show that the steady state of the system undergoes a localization entanglement phase transition by tuning $p$ which remains stable in the presence of coherent hopping.
arXiv Detail & Related papers (2023-03-13T12:45:25Z) - Full Counting Statistics of Charge in Chaotic Many-body Quantum Systems [0.0]
We study fluctuations of the charge transferred across the central bond in typical circuits.
We show that charge transfer fluctuations approach those of the symmetric exclusion process at long times, with subleading $t-1/2$ quantum corrections.
arXiv Detail & Related papers (2023-02-02T19:00:05Z) - Initial Correlations in Open Quantum Systems: Constructing Linear
Dynamical Maps and Master Equations [62.997667081978825]
We show that, for any predetermined initial correlations, one can introduce a linear dynamical map on the space of operators of the open system.
We demonstrate that this construction leads to a linear, time-local quantum master equation with generalized Lindblad structure.
arXiv Detail & Related papers (2022-10-24T13:43:04Z) - Space of initial conditions and universality in nonequilibrium quantum
dynamics [0.0]
We study the one-dimensional ferromagnets in the regime of spontaneously broken symmetry.
We analyze the expectation value of local operators for the infinite-dimensional space of initial conditions of domain wall type.
arXiv Detail & Related papers (2022-02-25T10:53:27Z) - Typicality of nonequilibrium (quasi-)steady currents [0.0]
We focus on a nonequilibrium scenario in which two nonintegrable systems prepared in different states are locally and non-extensively coupled to each other.
Using both perturbative analysis and numerical exact simulations of up to 28 spin systems, we demonstrate the typical emergence of nonequilibrium (quasi-)steady current for weak coupling between the subsystems.
arXiv Detail & Related papers (2021-11-25T11:00:10Z) - Exact quench dynamics of symmetry resolved entanglement in a free
fermion chain [0.0]
We study the time evolution of the symmetry resolved entanglement in free fermion systems.
Both entanglement entropies and mutual information show effective equipartition in the scaling limit of large time and subsystem size.
We argue that the behaviour of the charged entropies can be quantitatively understood in the framework of the quasiparticle picture for the spreading of entanglement.
arXiv Detail & Related papers (2021-06-24T15:50:27Z) - Interplay between transport and quantum coherences in free fermionic
systems [58.720142291102135]
We study the quench dynamics in free fermionic systems.
In particular, we identify a function, that we dub emphtransition map, which takes the value of the stationary current as input and gives the value of correlation as output.
arXiv Detail & Related papers (2021-03-24T17:47:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.