Typicality of nonequilibrium (quasi-)steady currents
- URL: http://arxiv.org/abs/2111.13019v2
- Date: Fri, 11 Feb 2022 02:15:50 GMT
- Title: Typicality of nonequilibrium (quasi-)steady currents
- Authors: Xiansong Xu, Chu Guo, and Dario Poletti
- Abstract summary: We focus on a nonequilibrium scenario in which two nonintegrable systems prepared in different states are locally and non-extensively coupled to each other.
Using both perturbative analysis and numerical exact simulations of up to 28 spin systems, we demonstrate the typical emergence of nonequilibrium (quasi-)steady current for weak coupling between the subsystems.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The understanding of the emergence of equilibrium statistical mechanics has
progressed significantly thanks to developments from typicality, canonical and
dynamical, and from the eigenstate thermalization hypothesis. Here we focus on
a nonequilibrium scenario in which two nonintegrable systems prepared in
different states are locally and non-extensively coupled to each other. Using
both perturbative analysis and numerical exact simulations of up to 28 spin
systems, we demonstrate the typical emergence of nonequilibrium (quasi-)steady
current for weak coupling between the subsystems. We also identify that these
currents originate from a prethermalization mechanism, which is the weak and
local breaking of the conservation of the energy for each subsystem.
Related papers
- Non-equilibrium dynamics of charged dual-unitary circuits [44.99833362998488]
interplay between symmetries and entanglement in out-of-equilibrium quantum systems is currently at the centre of an intense multidisciplinary research effort.
We show that one can introduce a class of solvable states, which extends that of generic dual unitary circuits.
In contrast to the known class of solvable states, which relax to the infinite temperature state, these states relax to a family of non-trivial generalised Gibbs ensembles.
arXiv Detail & Related papers (2024-07-31T17:57:14Z) - Stability of Quantum Systems beyond Canonical Typicality [9.632520418947305]
We analyze the statistical distribution of a quantum system coupled strongly with a heat bath.
The stability of system distribution is largely affected by the system--bath interaction strength.
arXiv Detail & Related papers (2024-07-22T02:59:04Z) - Three perspectives on entropy dynamics in a non-Hermitian two-state system [41.94295877935867]
entropy dynamics as an indicator of physical behavior in an open two-state system with balanced gain and loss is presented.
We distinguish the perspective taken in utilizing the conventional framework of Hermitian-adjoint states from an approach that is based on biorthogonal-adjoint states and a third case based on an isospectral mapping.
arXiv Detail & Related papers (2024-04-04T14:45:28Z) - Dissipative preparation of a Floquet topological insulator in an optical lattice via bath engineering [44.99833362998488]
Floquet engineering is an important tool for realizing charge-neutral atoms in optical lattices.
We show that a driven-dissipative system approximates a topological insulator.
arXiv Detail & Related papers (2023-07-07T17:47:50Z) - Dynamics of charge fluctuations from asymmetric initial states [0.0]
We study the dynamics of the fluctuations of conserved U(1) charges in systems that are prepared in charge-asymmetric initial states.
We show that, even though the initial states considered are homogeneous in space, the charge fluctuations generate an effective inhomogeneity due to the charge-asymmetric nature of the initial states.
arXiv Detail & Related papers (2023-06-21T17:42:56Z) - Simultaneous Transport Evolution for Minimax Equilibria on Measures [48.82838283786807]
Min-max optimization problems arise in several key machine learning setups, including adversarial learning and generative modeling.
In this work we focus instead in finding mixed equilibria, and consider the associated lifted problem in the space of probability measures.
By adding entropic regularization, our main result establishes global convergence towards the global equilibrium.
arXiv Detail & Related papers (2022-02-14T02:23:16Z) - Exact solutions of interacting dissipative systems via weak symmetries [77.34726150561087]
We analytically diagonalize the Liouvillian of a class Markovian dissipative systems with arbitrary strong interactions or nonlinearity.
This enables an exact description of the full dynamics and dissipative spectrum.
Our method is applicable to a variety of other systems, and could provide a powerful new tool for the study of complex driven-dissipative quantum systems.
arXiv Detail & Related papers (2021-09-27T17:45:42Z) - Prethermalization of quantum systems interacting with non-equilibrium
environments [0.0]
We study a two level system coupled to a first thermal reservoir that in turn couples to a second thermal bath at a different temperature.
We observe prethermalization, a transitory phenomenon in which the system initially approaches thermal equilibrium with respect to the first reservoir.
In this case, the energy current through the system may exhibit transient features and even switch direction, before the system eventually reaches a non-equilibrium steady state.
arXiv Detail & Related papers (2020-05-15T09:46:51Z) - Assessing the role of initial correlations in the entropy production
rate for non-equilibrium harmonic dynamics [0.0]
We shed light on the relation between correlations, initial preparation of the system and non-Markovianity.
We show that the global purity of the initial state of the system influences the behaviour of the entropy production rate.
arXiv Detail & Related papers (2020-04-22T17:29:43Z) - Out-of-equilibrium quantum thermodynamics in the Bloch sphere:
temperature and internal entropy production [68.8204255655161]
An explicit expression for the temperature of an open two-level quantum system is obtained.
This temperature coincides with the environment temperature if the system reaches thermal equilibrium with a heat reservoir.
We show that within this theoretical framework the total entropy production can be partitioned into two contributions.
arXiv Detail & Related papers (2020-04-09T23:06:43Z) - Non-equilibrium steady-states of memoryless quantum collision models [0.0]
We show that only a coupling Hamiltonian in the energy-preserving form drives the system to thermal equilibrium.
We characterize the specific form of system-environment interaction that drives the system to a steady-state exhibiting coherence in the energy eigenbasis.
arXiv Detail & Related papers (2020-01-06T19:00:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.