論文の概要: LMFlow: An Extensible Toolkit for Finetuning and Inference of Large Foundation Models
- arxiv url: http://arxiv.org/abs/2306.12420v2
- Date: Sun, 5 May 2024 13:13:02 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-08 01:16:13.280554
- Title: LMFlow: An Extensible Toolkit for Finetuning and Inference of Large Foundation Models
- Title(参考訳): LMFlow:大規模基盤モデルの微調整と推論のための拡張可能なツールキット
- Authors: Shizhe Diao, Rui Pan, Hanze Dong, Ka Shun Shum, Jipeng Zhang, Wei Xiong, Tong Zhang,
- Abstract要約: ファンデーションモデルは、従来のアプローチをはるかに超越した、一般的な人間レベルのインテリジェンスを達成するための優れた能力を示してきた。
ほとんどの基礎モデルの重大な欠点は、特殊ドメインやタスク固有のアプリケーションのパフォーマンスにある。
本稿では,一般基礎モデルのドメイン・タスク・アウェア・ファインタニングを簡略化することを目的としたLMFlowを紹介する。
- 参考スコア(独自算出の注目度): 31.121714473817793
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Foundation models have demonstrated a great ability to achieve general human-level intelligence far beyond traditional approaches. As the technique keeps attracting attention from the AI community, an increasing number of foundation models are becoming publicly accessible. However, a significant shortcoming of most of these models lies in their performance in specialized-domain and task-specific applications, necessitating domain- and task-aware fine-tuning to develop effective scientific language models. As the number of available foundation models and specialized tasks keeps growing, the job of training scientific language models becomes highly nontrivial. In this paper, we initiate steps to tackle this issue. We introduce an extensible and lightweight toolkit, LMFlow, which aims to simplify the domain- and task-aware finetuning of general foundation models. LMFlow offers a complete finetuning workflow for a foundation model to support specialized training with limited computing resources. Furthermore, it supports continuous pretraining, instruction tuning, parameter-efficient finetuning, alignment tuning, inference acceleration, long context generalization, model customization, and even multimodal finetuning, along with carefully designed and extensible APIs. This toolkit has been thoroughly tested and is available at https://github.com/OptimalScale/LMFlow.
- Abstract(参考訳): ファンデーションモデルは、従来のアプローチをはるかに超越した、一般的な人間レベルのインテリジェンスを達成するための優れた能力を示してきた。
この技術がAIコミュニティから注目を集めている中、ファンデーションモデルの増加が公になってきている。
しかしながら、これらのモデルの重大な欠点は、特定のドメインやタスク固有のアプリケーションのパフォーマンスであり、効果的な科学的言語モデルを開発するためにドメインやタスク対応の微調整を必要とすることである。
利用可能な基礎モデルや専門的なタスクの数が増え続けているため、科学言語モデルを訓練する仕事は極めて簡単ではない。
本稿では,この問題に対処するための取り組みを開始する。
本稿では,汎用基盤モデルのドメイン・タスク・アウェア・ファインタニングを簡略化することを目的とした拡張可能で軽量なツールキットLMFlowを紹介する。
LMFlowは、限られたコンピューティングリソースで専門的なトレーニングをサポートする基礎モデルのための完全な微調整ワークフローを提供する。
さらに、継続的事前トレーニング、命令チューニング、パラメータ効率の高い微調整、アライメントチューニング、推論アクセラレーション、長期コンテキストの一般化、モデルのカスタマイズ、さらには、慎重に設計され拡張可能なAPIまでサポートしている。
このツールキットは徹底的にテストされており、https://github.com/OptimalScale/LMFlow.comで入手できる。
関連論文リスト
- Efficient Domain Adaptation of Multimodal Embeddings using Constrastive Learning [0.08192907805418582]
現在のアプローチでは、タスク固有の適応なしに事前訓練されたモデルを使用する際にサブパー結果を得るか、あるいは微調整のためにかなりの計算資源を必要とする。
本稿では,高コストな微調整処理を必要とせず,基礎的なマルチモーダルな埋め込みを下流タスクに適用するための新しい手法を提案する。
論文 参考訳(メタデータ) (2025-02-04T06:30:12Z) - Can bidirectional encoder become the ultimate winner for downstream applications of foundation models? [1.8120356834558644]
基礎モデルには、事前学習、移動学習、自己指導学習の特徴がある。
BERTは、マスク付き言語モデルを用いて事前学習において、一方通行の言語モデリングのみを使用するという制限を突破した。
本稿では,GPT と BERT に基づく一方向モデルと双方向モデルを分析し,その目的に基づいて差分を比較する。
論文 参考訳(メタデータ) (2024-11-27T03:31:14Z) - Specialized Foundation Models Struggle to Beat Supervised Baselines [60.23386520331143]
ゲノミクス、衛星画像、時系列の3つのモードを最近のFMで調べ、それらを標準的な教師付き学習ワークフローと比較する。
最新のファンデーションモデルにマッチしたり、性能を上回るような、シンプルな教師付きモデルのトレーニングが一貫して可能であることが分かりました。
論文 参考訳(メタデータ) (2024-11-05T04:10:59Z) - An Emulator for Fine-Tuning Large Language Models using Small Language
Models [91.02498576056057]
本研究では,異なるスケールでの事前学習と微調整の結果を近似する分布から,エミュレート・ファインチューニング(EFT)を原理的かつ実用的なサンプリング法として導入する。
EFTは、追加トレーニングを伴わずに、有益性や無害性といった競合する行動特性をテスト時間で調整できることを示す。
最後に、LMアップスケーリングと呼ばれるエミュレートされたファインチューニングの特殊な場合において、小さなファインチューニングモデルと組み合わせることで、大きな事前学習モデルのリソース集約的なファインチューニングを回避する。
論文 参考訳(メタデータ) (2023-10-19T17:57:16Z) - Adapting Large Language Models for Content Moderation: Pitfalls in Data
Engineering and Supervised Fine-tuning [79.53130089003986]
大規模言語モデル(LLM)は、様々なドメインでタスクを処理するための実現可能なソリューションとなっている。
本稿では、コンテンツモデレーションのためにプライベートにデプロイ可能なLLMモデルを微調整する方法を紹介する。
論文 参考訳(メタデータ) (2023-10-05T09:09:44Z) - TaCA: Upgrading Your Visual Foundation Model with Task-agnostic
Compatible Adapter [21.41170708560114]
視覚基盤モデルに基づくアプリケーションが増えている。
システムのアップグレードを伴う状況では、新しい基盤モデルに適応するために、下流モジュールを再訓練することが不可欠です。
パラメータ効率とタスク非依存のアダプタであるTaCAを導入し,異なる基礎モデル間の互換性を実現する。
論文 参考訳(メタデータ) (2023-06-22T03:00:24Z) - Towards Efficient Task-Driven Model Reprogramming with Foundation Models [52.411508216448716]
ビジョンファウンデーションモデルは、非常に大きなモデルキャパシティと幅広いトレーニングデータから恩恵を受け、印象的なパワーを示す。
しかし、実際には、下流のシナリオは限られた計算資源や効率上の考慮のため、小さなモデルしかサポートできない。
これは、ファンデーションモデルの現実的な応用に重要な課題をもたらします。
論文 参考訳(メタデータ) (2023-04-05T07:28:33Z) - eP-ALM: Efficient Perceptual Augmentation of Language Models [70.47962271121389]
本稿では,既存モデルの適応性を向上するための直接的な取り組みを提案し,認識を伴う言語モデルの拡張を提案する。
視覚言語タスクに事前訓練されたモデルを適用するための既存のアプローチは、その効率を妨げているいくつかの重要なコンポーネントに依存している。
総パラメータの99%以上を凍結し,1つの直線射影層のみをトレーニングし,1つのトレーニング可能なトークンのみを予測することにより,我々のアプローチ(eP-ALM)は,VQAとCaptioningの他のベースラインよりも有意に優れていることを示す。
論文 参考訳(メタデータ) (2023-03-20T19:20:34Z) - Model Reprogramming: Resource-Efficient Cross-Domain Machine Learning [65.268245109828]
視覚、言語、音声などのデータに富む領域では、ディープラーニングが高性能なタスク固有モデルを提供するのが一般的である。
リソース制限されたドメインでのディープラーニングは、(i)限られたデータ、(ii)制約付きモデル開発コスト、(iii)効果的な微調整のための適切な事前学習モデルの欠如など、多くの課題に直面している。
モデル再プログラミングは、ソースドメインから十分に訓練されたモデルを再利用して、モデル微調整なしでターゲットドメインのタスクを解くことで、リソース効率のよいクロスドメイン機械学習を可能にする。
論文 参考訳(メタデータ) (2022-02-22T02:33:54Z) - Adapt-and-Distill: Developing Small, Fast and Effective Pretrained
Language Models for Domains [45.07506437436464]
本稿では、特定のドメインに対して、小型で高速かつ効果的に事前訓練されたモデルを開発するための一般的なアプローチを提案する。
これは、既成の一般訓練モデルに適応し、ターゲットドメインでタスク非依存の知識蒸留を行うことによって達成される。
論文 参考訳(メタデータ) (2021-06-25T07:37:05Z) - CALM: Continuous Adaptive Learning for Language Modeling [18.72860206714457]
自然言語処理コミュニティでは,大規模言語表現モデルのトレーニングが標準となっている。
これらの事前学習モデルが破滅的忘れという形で性能劣化を示すことを示す。
言語モデリングのための継続的適応学習CALM:複数のドメインにまたがる知識を保持するモデルをレンダリングする手法を提案する。
論文 参考訳(メタデータ) (2020-04-08T03:51:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。