論文の概要: Efficient Domain Adaptation of Multimodal Embeddings using Constrastive Learning
- arxiv url: http://arxiv.org/abs/2502.02048v1
- Date: Tue, 04 Feb 2025 06:30:12 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-05 15:05:36.707377
- Title: Efficient Domain Adaptation of Multimodal Embeddings using Constrastive Learning
- Title(参考訳): コンストラクティブ・ラーニングを用いたマルチモーダル・エンベディングのドメイン適応
- Authors: Georgios Margaritis, Periklis Petridis, Dimitris J. Bertsimas,
- Abstract要約: 現在のアプローチでは、タスク固有の適応なしに事前訓練されたモデルを使用する際にサブパー結果を得るか、あるいは微調整のためにかなりの計算資源を必要とする。
本稿では,高コストな微調整処理を必要とせず,基礎的なマルチモーダルな埋め込みを下流タスクに適用するための新しい手法を提案する。
- 参考スコア(独自算出の注目度): 0.08192907805418582
- License:
- Abstract: Recent advancements in machine learning (ML), natural language processing (NLP), and foundational models have shown promise for real-life applications in critical, albeit compute-constrainted fields like healthcare. In such areas, combining foundational models with supervised ML offers potential for automating tasks like diagnosis and treatment planning, but the limited availability of onsite computational resources pose significant challenges before applying these technologies effectively: Current approaches either yield subpar results when using pretrained models without task-specific adaptation, or require substantial computational resources for fine-tuning, which is often a barrier to entry in such environments. This renders them inaccessible in applications where performance and quality standards are high, but computational resources are scarce. To bridge the gap between best-in-class performance and accessibility, we propose a novel method for adapting foundational, multimodal embeddings to downstream tasks, without the need of expensive fine-tuning processes. Our method leverages frozen embeddings from Large Language Models (LLMs) and Vision Models, and uses contrastive learning to train a small, task-specific nonlinear projection that can be used in the downstream task, without having to fine-tune the original foundational models. We show that this efficient procedure leads to significant performance improvements across various downstream tasks, and perhaps more importantly with minimal computational overhead, offering a practical solution for the use of advanced, foundational ML models in resource-constrained settings.
- Abstract(参考訳): 機械学習(ML)、自然言語処理(NLP)、基礎モデルの最近の進歩は、医療のような計算に制約のある分野において、現実の応用を約束している。
このような分野では、基本的なモデルと教師付きMLを組み合わせることで、診断や治療計画などのタスクを自動化することができるが、現場の計算資源の限られた利用は、これらの技術を効果的に適用する前に重大な課題をもたらす。
これにより、パフォーマンスと品質の基準が高いアプリケーションではアクセスできないが、計算リソースは少ない。
最良クラス性能とアクセシビリティのギャップを埋めるために,高コストな微調整プロセスを必要としない,基礎的マルチモーダル埋め込みを下流タスクに適用するための新しい手法を提案する。
提案手法では,Large Language Models (LLMs) とVision Models の凍結埋め込みを利用して,従来の基礎モデルを微調整することなく,下流タスクで使用できる小型のタスク固有非線形プロジェクションを学習する。
この効率的な手順は、様々なダウンストリームタスクにまたがって大幅なパフォーマンス向上をもたらし、おそらくは計算オーバーヘッドを最小限に抑え、リソース制約のある設定において、高度な基礎的なMLモデルを使用するための実用的なソリューションを提供する。
関連論文リスト
- Q-SFT: Q-Learning for Language Models via Supervised Fine-Tuning [62.984693936073974]
価値に基づく強化学習は、幅広いマルチターン問題に対する効果的なポリシーを学ぶことができる。
現在の値ベースのRL法は、特に大規模な言語モデルの設定にスケールすることが困難であることが証明されている。
本稿では,これらの欠点に対処する新しいオフラインRLアルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-11-07T21:36:52Z) - MIREncoder: Multi-modal IR-based Pretrained Embeddings for Performance Optimizations [6.919817502555546]
本稿では,Multi-modal IRベースのオートエンコーダであるMIREncoderを提案する。
マルチモーダルなアプローチにより、コンパイル可能なプログラムからより優れた特徴を抽出できる。
評価の結果,提案手法はオーバヘッドを低減しつつ,技術状況より優れることが示された。
論文 参考訳(メタデータ) (2024-07-02T13:00:19Z) - AXOLOTL: Fairness through Assisted Self-Debiasing of Large Language
Model Outputs [20.772266479533776]
AXOLOTLはタスクやモデル間で不可知的に動作する新しい後処理フレームワークである。
バイアスを識別し、解像度を提案し、モデルにアウトプットを自己バイアスさせる。
このアプローチは計算コストを最小化し、モデル性能を保存する。
論文 参考訳(メタデータ) (2024-03-01T00:02:37Z) - A Multi-Head Ensemble Multi-Task Learning Approach for Dynamical
Computation Offloading [62.34538208323411]
共有バックボーンと複数の予測ヘッド(PH)を組み合わせたマルチヘッドマルチタスク学習(MEMTL)手法を提案する。
MEMTLは、追加のトレーニングデータを必要とせず、推測精度と平均平方誤差の両方でベンチマーク手法より優れている。
論文 参考訳(メタデータ) (2023-09-02T11:01:16Z) - Multi-Objective Optimization for Sparse Deep Multi-Task Learning [0.0]
重み付きチェビシェフスキャラライゼーションを用いたディープニューラルネットワーク(DNN)のトレーニングのための多目的最適化アルゴリズムを提案する。
本研究の目的は,DNNモデルの持続可能性問題,特にDeep Multi-Taskモデルに焦点をあてることである。
論文 参考訳(メタデータ) (2023-08-23T16:42:27Z) - Towards Efficient Task-Driven Model Reprogramming with Foundation Models [52.411508216448716]
ビジョンファウンデーションモデルは、非常に大きなモデルキャパシティと幅広いトレーニングデータから恩恵を受け、印象的なパワーを示す。
しかし、実際には、下流のシナリオは限られた計算資源や効率上の考慮のため、小さなモデルしかサポートできない。
これは、ファンデーションモデルの現実的な応用に重要な課題をもたらします。
論文 参考訳(メタデータ) (2023-04-05T07:28:33Z) - Improving Multi-task Learning via Seeking Task-based Flat Regions [38.28600737969538]
MTL(Multi-Task Learning)は、ディープニューラルネットワークをトレーニングするための強力な学習パラダイムである。
MTLには、究極の勾配降下方向を導出するためにタスク勾配を操作することに焦点を当てた、新たな作業ラインがある。
単タスク学習におけるモデル一般化能力を向上するシャープネス認識最小化という,最近導入されたトレーニング手法を活用することを提案する。
論文 参考訳(メタデータ) (2022-11-24T17:19:30Z) - Model-Agnostic Multitask Fine-tuning for Few-shot Vision-Language
Transfer Learning [59.38343286807997]
未知タスクの視覚言語モデルのためのモデル非依存型マルチタスクファインチューニング(MAMF)を提案する。
モデルに依存しないメタラーニング(MAML)と比較して、MAMFは二段階最適化を捨て、一階勾配のみを使用する。
MAMFは5つのベンチマークデータセット上で、数ショットの転送学習において古典的な微調整法よりも一貫して優れていることを示す。
論文 参考訳(メタデータ) (2022-03-09T17:26:53Z) - Model Reprogramming: Resource-Efficient Cross-Domain Machine Learning [65.268245109828]
視覚、言語、音声などのデータに富む領域では、ディープラーニングが高性能なタスク固有モデルを提供するのが一般的である。
リソース制限されたドメインでのディープラーニングは、(i)限られたデータ、(ii)制約付きモデル開発コスト、(iii)効果的な微調整のための適切な事前学習モデルの欠如など、多くの課題に直面している。
モデル再プログラミングは、ソースドメインから十分に訓練されたモデルを再利用して、モデル微調整なしでターゲットドメインのタスクを解くことで、リソース効率のよいクロスドメイン機械学習を可能にする。
論文 参考訳(メタデータ) (2022-02-22T02:33:54Z) - Offline Model-Based Optimization via Normalized Maximum Likelihood
Estimation [101.22379613810881]
データ駆動最適化の問題を検討し、一定の点セットでクエリのみを与えられた関数を最大化する必要がある。
この問題は、関数評価が複雑で高価なプロセスである多くの領域に現れる。
我々は,提案手法を高容量ニューラルネットワークモデルに拡張可能なトラクタブル近似を提案する。
論文 参考訳(メタデータ) (2021-02-16T06:04:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。