Comparing Deep Learning Models for the Task of Volatility Prediction
Using Multivariate Data
- URL: http://arxiv.org/abs/2306.12446v2
- Date: Fri, 23 Jun 2023 08:01:42 GMT
- Title: Comparing Deep Learning Models for the Task of Volatility Prediction
Using Multivariate Data
- Authors: Wenbo Ge, Pooia Lalbakhsh, Leigh Isai, Artem Lensky, Hanna Suominen
- Abstract summary: The paper evaluates a range of models, starting from simpler and shallower ones and progressing to deeper and more complex architectures.
The prediction of volatility for five assets, namely S&P500, NASDAQ100, gold, silver, and oil, is specifically addressed using GARCH models.
- Score: 4.793572485305333
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This study aims to compare multiple deep learning-based forecasters for the
task of predicting volatility using multivariate data. The paper evaluates a
range of models, starting from simpler and shallower ones and progressing to
deeper and more complex architectures. Additionally, the performance of these
models is compared against naive predictions and variations of classical GARCH
models.
The prediction of volatility for five assets, namely S&P500, NASDAQ100, gold,
silver, and oil, is specifically addressed using GARCH models, Multi-Layer
Perceptrons, Recurrent Neural Networks, Temporal Convolutional Networks, and
the Temporal Fusion Transformer. In the majority of cases, the Temporal Fusion
Transformer, followed by variants of the Temporal Convolutional Network,
outperformed classical approaches and shallow networks. These experiments were
repeated, and the differences observed between the competing models were found
to be statistically significant, thus providing strong encouragement for their
practical application.
Related papers
- Variational autoencoder-based neural network model compression [4.992476489874941]
Variational Autoencoders (VAEs), as a form of deep generative model, have been widely used in recent years.
This paper aims to explore neural network model compression method based on VAE.
arXiv Detail & Related papers (2024-08-25T09:06:22Z) - MGCP: A Multi-Grained Correlation based Prediction Network for Multivariate Time Series [54.91026286579748]
We propose a Multi-Grained Correlations-based Prediction Network.
It simultaneously considers correlations at three levels to enhance prediction performance.
It employs adversarial training with an attention mechanism-based predictor and conditional discriminator to optimize prediction results at coarse-grained level.
arXiv Detail & Related papers (2024-05-30T03:32:44Z) - The Capacity and Robustness Trade-off: Revisiting the Channel
Independent Strategy for Multivariate Time Series Forecasting [50.48888534815361]
We show that models trained with the Channel Independent (CI) strategy outperform those trained with the Channel Dependent (CD) strategy.
Our results conclude that the CD approach has higher capacity but often lacks robustness to accurately predict distributionally drifted time series.
We propose a modified CD method called Predict Residuals with Regularization (PRReg) that can surpass the CI strategy.
arXiv Detail & Related papers (2023-04-11T13:15:33Z) - Multi-scale Attention Flow for Probabilistic Time Series Forecasting [68.20798558048678]
We propose a novel non-autoregressive deep learning model, called Multi-scale Attention Normalizing Flow(MANF)
Our model avoids the influence of cumulative error and does not increase the time complexity.
Our model achieves state-of-the-art performance on many popular multivariate datasets.
arXiv Detail & Related papers (2022-05-16T07:53:42Z) - Deep Generative model with Hierarchical Latent Factors for Time Series
Anomaly Detection [40.21502451136054]
This work presents DGHL, a new family of generative models for time series anomaly detection.
A top-down Convolution Network maps a novel hierarchical latent space to time series windows, exploiting temporal dynamics to encode information efficiently.
Our method outperformed current state-of-the-art models on four popular benchmark datasets.
arXiv Detail & Related papers (2022-02-15T17:19:44Z) - Sparse MoEs meet Efficient Ensembles [49.313497379189315]
We study the interplay of two popular classes of such models: ensembles of neural networks and sparse mixture of experts (sparse MoEs)
We present Efficient Ensemble of Experts (E$3$), a scalable and simple ensemble of sparse MoEs that takes the best of both classes of models, while using up to 45% fewer FLOPs than a deep ensemble.
arXiv Detail & Related papers (2021-10-07T11:58:35Z) - Forecasting High-Dimensional Covariance Matrices of Asset Returns with
Hybrid GARCH-LSTMs [0.0]
This paper investigates the ability of hybrid models, mixing GARCH processes and neural networks, to forecast covariance matrices of asset returns.
The new model proposed is very promising as it not only outperforms the equally weighted portfolio, but also by a significant margin its econometric counterpart.
arXiv Detail & Related papers (2021-08-25T23:41:43Z) - Evaluation of deep learning models for multi-step ahead time series
prediction [1.3764085113103222]
We present an evaluation study that compares the performance of deep learning models for multi-step ahead time series prediction.
Our deep learning methods compromise of simple recurrent neural networks, long short term memory (LSTM) networks, bidirectional LSTM, encoder-decoder LSTM networks, and convolutional neural networks.
arXiv Detail & Related papers (2021-03-26T04:07:11Z) - Anomaly Detection of Time Series with Smoothness-Inducing Sequential
Variational Auto-Encoder [59.69303945834122]
We present a Smoothness-Inducing Sequential Variational Auto-Encoder (SISVAE) model for robust estimation and anomaly detection of time series.
Our model parameterizes mean and variance for each time-stamp with flexible neural networks.
We show the effectiveness of our model on both synthetic datasets and public real-world benchmarks.
arXiv Detail & Related papers (2021-02-02T06:15:15Z) - Improving the Reconstruction of Disentangled Representation Learners via Multi-Stage Modeling [54.94763543386523]
Current autoencoder-based disentangled representation learning methods achieve disentanglement by penalizing the ( aggregate) posterior to encourage statistical independence of the latent factors.
We present a novel multi-stage modeling approach where the disentangled factors are first learned using a penalty-based disentangled representation learning method.
Then, the low-quality reconstruction is improved with another deep generative model that is trained to model the missing correlated latent variables.
arXiv Detail & Related papers (2020-10-25T18:51:15Z) - Variational Dynamic Mixtures [18.730501689781214]
We develop variational dynamic mixtures (VDM) to infer sequential latent variables.
In an empirical study, we show that VDM outperforms competing approaches on highly multi-modal datasets.
arXiv Detail & Related papers (2020-10-20T16:10:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.