Deep Dynamic Epidemiological Modelling for COVID-19 Forecasting in
Multi-level Districts
- URL: http://arxiv.org/abs/2306.12457v1
- Date: Wed, 21 Jun 2023 06:30:02 GMT
- Title: Deep Dynamic Epidemiological Modelling for COVID-19 Forecasting in
Multi-level Districts
- Authors: Ruhan Liu, Jiajia Li, Yang Wen, Huating Li, Ping Zhang, Bin Sheng,
David Dagan Feng
- Abstract summary: Epidemiological equations based on the SEIR model simulate disease development.
Traditional parameter estimation method to solve SEIR equations could not precisely fit real-world data.
Deep dynamic epidemiological (DDE) method combines epidemiological equations and deep-learning advantages.
- Score: 23.725821734863487
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Objective: COVID-19 has spread worldwide and made a huge influence across the
world. Modeling the infectious spread situation of COVID-19 is essential to
understand the current condition and to formulate intervention measurements.
Epidemiological equations based on the SEIR model simulate disease development.
The traditional parameter estimation method to solve SEIR equations could not
precisely fit real-world data due to different situations, such as social
distancing policies and intervention strategies. Additionally, learning-based
models achieve outstanding fitting performance, but cannot visualize
mechanisms. Methods: Thus, we propose a deep dynamic epidemiological (DDE)
method that combines epidemiological equations and deep-learning advantages to
obtain high accuracy and visualization. The DDE contains deep networks to fit
the effect function to simulate the ever-changing situations based on the
neural ODE method in solving variants' equations, ensuring the fitting
performance of multi-level areas. Results: We introduce four SEIR variants to
fit different situations in different countries and regions. We compare our DDE
method with traditional parameter estimation methods (Nelder-Mead, BFGS,
Powell, Truncated Newton Conjugate-Gradient, Neural ODE) in fitting the
real-world data in the cases of countries (the USA, Columbia, South Africa) and
regions (Wuhan in China, Piedmont in Italy). Our DDE method achieves the best
Mean Square Error and Pearson coefficient in all five areas. Further, compared
with the state-of-art learning-based approaches, the DDE outperforms all
techniques, including LSTM, RNN, GRU, Random Forest, Extremely Random Trees,
and Decision Tree. Conclusion: DDE presents outstanding predictive ability and
visualized display of the changes in infection rates in different regions and
countries.
Related papers
- Adversarial Learning for Neural PDE Solvers with Sparse Data [4.226449585713182]
This study introduces a universal learning strategy for neural network PDEs, named Systematic Model Augmentation for Robust Training.
By focusing on challenging and improving the model's weaknesses, SMART reduces generalization error during training under data-scarce conditions.
arXiv Detail & Related papers (2024-09-04T04:18:25Z) - Learning COVID-19 Regional Transmission Using Universal Differential
Equations in a SIR model [0.0]
We propose using Universal Differential Equations (UDEs) to capture the influence of neighboring regions.
We include an additive term to the SIR equations composed by a deep neural network (DNN) that learns the incoming force of infection from the other regions.
We compared the proposed model using a simulated COVID-19 outbreak against a single-region SIR and a fully data-driven model composed only of a DNN.
arXiv Detail & Related papers (2023-10-25T17:35:01Z) - PDE+: Enhancing Generalization via PDE with Adaptive Distributional
Diffusion [66.95761172711073]
generalization of neural networks is a central challenge in machine learning.
We propose to enhance it directly through the underlying function of neural networks, rather than focusing on adjusting input data.
We put this theoretical framework into practice as $textbfPDE+$ ($textbfPDE$ with $textbfA$daptive $textbfD$istributional $textbfD$iffusion)
arXiv Detail & Related papers (2023-05-25T08:23:26Z) - PINN Training using Biobjective Optimization: The Trade-off between Data
Loss and Residual Loss [0.0]
Physics informed neural networks (PINNs) have proven to be an efficient tool to represent problems for which measured data are available.
In this paper, we suggest a multiobjective perspective on the training of PINNs by treating the data loss and the residual loss as two individual objective functions.
arXiv Detail & Related papers (2023-02-03T15:27:50Z) - Differentiable Agent-based Epidemiology [71.81552021144589]
We introduce GradABM: a scalable, differentiable design for agent-based modeling that is amenable to gradient-based learning with automatic differentiation.
GradABM can quickly simulate million-size populations in few seconds on commodity hardware, integrate with deep neural networks and ingest heterogeneous data sources.
arXiv Detail & Related papers (2022-07-20T07:32:02Z) - Mixed Effects Neural ODE: A Variational Approximation for Analyzing the
Dynamics of Panel Data [50.23363975709122]
We propose a probabilistic model called ME-NODE to incorporate (fixed + random) mixed effects for analyzing panel data.
We show that our model can be derived using smooth approximations of SDEs provided by the Wong-Zakai theorem.
We then derive Evidence Based Lower Bounds for ME-NODE, and develop (efficient) training algorithms.
arXiv Detail & Related papers (2022-02-18T22:41:51Z) - An Optimal Control Approach to Learning in SIDARTHE Epidemic model [67.22168759751541]
We propose a general approach for learning time-variant parameters of dynamic compartmental models from epidemic data.
We forecast the epidemic evolution in Italy and France.
arXiv Detail & Related papers (2020-10-28T10:58:59Z) - Robust pricing and hedging via neural SDEs [0.0]
We develop and analyse novel algorithms needed for efficient use of neural SDEs.
We find robust bounds for prices of derivatives and the corresponding hedging strategies while incorporating relevant market data.
Neural SDEs allow consistent calibration under both the risk-neutral and the real-world measures.
arXiv Detail & Related papers (2020-07-08T14:33:17Z) - When and How to Lift the Lockdown? Global COVID-19 Scenario Analysis and
Policy Assessment using Compartmental Gaussian Processes [111.69190108272133]
coronavirus disease 2019 (COVID-19) global pandemic has led many countries to impose unprecedented lockdown measures.
Data-driven models that predict COVID-19 fatalities under different lockdown policy scenarios are essential.
This paper develops a Bayesian model for predicting the effects of COVID-19 lockdown policies in a global context.
arXiv Detail & Related papers (2020-05-13T18:21:50Z) - Stochasticity in Neural ODEs: An Empirical Study [68.8204255655161]
Regularization of neural networks (e.g. dropout) is a widespread technique in deep learning that allows for better generalization.
We show that data augmentation during the training improves the performance of both deterministic and versions of the same model.
However, the improvements obtained by the data augmentation completely eliminate the empirical regularization gains, making the performance of neural ODE and neural SDE negligible.
arXiv Detail & Related papers (2020-02-22T22:12:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.