Demonstration of fault-tolerant Steane quantum error correction
- URL: http://arxiv.org/abs/2312.09745v1
- Date: Fri, 15 Dec 2023 12:32:49 GMT
- Title: Demonstration of fault-tolerant Steane quantum error correction
- Authors: Lukas Postler, Friederike Butt, Ivan Pogorelov, Christian D.
Marciniak, Sascha Heu{\ss}en, Rainer Blatt, Philipp Schindler, Manuel
Rispler, Markus M\"uller, Thomas Monz
- Abstract summary: This study presents the implementation of multiple rounds of fault-tolerant Steane QEC on a trapped-ion quantum computer.
Various QEC codes are employed, and the results are compared to a previous experimental approach utilizing flag qubits.
- Score: 0.7174990929661688
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Encoding information redundantly using quantum error-correcting (QEC) codes
allows one to overcome the inherent sensitivity to noise in quantum computers
to ultimately achieve large-scale quantum computation. The Steane QEC method
involves preparing an auxiliary logical qubit of the same QEC code used for the
data register. The data and auxiliary registers are then coupled with a logical
CNOT gate, enabling a measurement of the auxiliary register to reveal the error
syndrome. This study presents the implementation of multiple rounds of
fault-tolerant Steane QEC on a trapped-ion quantum computer. Various QEC codes
are employed, and the results are compared to a previous experimental approach
utilizing flag qubits. Our experimental findings show improved logical
fidelities for Steane QEC. This establishes experimental Steane QEC as a
competitive paradigm for fault-tolerant quantum computing.
Related papers
- Testing the Accuracy of Surface Code Decoders [55.616364225463066]
Large-scale, fault-tolerant quantum computations will be enabled by quantum error-correcting codes (QECC)
This work presents the first systematic technique to test the accuracy and effectiveness of different QECC decoding schemes.
arXiv Detail & Related papers (2023-11-21T10:22:08Z) - Single-shot decoding of good quantum LDPC codes [38.12919328528587]
We prove that quantum Tanner codes facilitate single-shot quantum error correction (QEC) of adversarial noise.
We show that in order to suppress errors over multiple repeated rounds of QEC, it suffices to run the parallel decoding algorithm for constant time in each round.
arXiv Detail & Related papers (2023-06-21T18:00:01Z) - Quantum Imitation Learning [74.15588381240795]
We propose quantum imitation learning (QIL) with a hope to utilize quantum advantage to speed up IL.
We develop two QIL algorithms, quantum behavioural cloning (Q-BC) and quantum generative adversarial imitation learning (Q-GAIL)
Experiment results demonstrate that both Q-BC and Q-GAIL can achieve comparable performance compared to classical counterparts.
arXiv Detail & Related papers (2023-04-04T12:47:35Z) - Quantum process tomography of continuous-variable gates using coherent
states [49.299443295581064]
We demonstrate the use of coherent-state quantum process tomography (csQPT) for a bosonic-mode superconducting circuit.
We show results for this method by characterizing a logical quantum gate constructed using displacement and SNAP operations on an encoded qubit.
arXiv Detail & Related papers (2023-03-02T18:08:08Z) - Deep Quantum Error Correction [73.54643419792453]
Quantum error correction codes (QECC) are a key component for realizing the potential of quantum computing.
In this work, we efficiently train novel emphend-to-end deep quantum error decoders.
The proposed method demonstrates the power of neural decoders for QECC by achieving state-of-the-art accuracy.
arXiv Detail & Related papers (2023-01-27T08:16:26Z) - Beating the break-even point with a discrete-variable-encoded logical
qubit [11.225411597366886]
Quantum error correction (QEC) aims to protect logical qubits from noises by utilizing the redundancy of a large Hilbert space.
In most QEC codes, a logical qubit is encoded in some discrete variables, e.g., photon numbers.
Our work illustrates the potential of the hardware-efficient discrete-variable QEC codes towards a reliable quantum information processor.
arXiv Detail & Related papers (2022-11-17T03:38:55Z) - Quantum computation capability verification protocol for NISQ devices
with dihedral coset problem [0.4061135251278187]
We propose an interactive protocol for one party (the verifier) holding a quantum computer to verify the quantum computation power of another party's (the prover) device via a one-way quantum channel.
We conduct a 4-qubit experiment on one of IBM Q devices.
arXiv Detail & Related papers (2022-02-14T19:00:58Z) - Measuring NISQ Gate-Based Qubit Stability Using a 1+1 Field Theory and
Cycle Benchmarking [50.8020641352841]
We study coherent errors on a quantum hardware platform using a transverse field Ising model Hamiltonian as a sample user application.
We identify inter-day and intra-day qubit calibration drift and the impacts of quantum circuit placement on groups of qubits in different physical locations on the processor.
This paper also discusses how these measurements can provide a better understanding of these types of errors and how they may improve efforts to validate the accuracy of quantum computations.
arXiv Detail & Related papers (2022-01-08T23:12:55Z) - Crosstalk Suppression for Fault-tolerant Quantum Error Correction with
Trapped Ions [62.997667081978825]
We present a study of crosstalk errors in a quantum-computing architecture based on a single string of ions confined by a radio-frequency trap, and manipulated by individually-addressed laser beams.
This type of errors affects spectator qubits that, ideally, should remain unaltered during the application of single- and two-qubit quantum gates addressed at a different set of active qubits.
We microscopically model crosstalk errors from first principles and present a detailed study showing the importance of using a coherent vs incoherent error modelling and, moreover, discuss strategies to actively suppress this crosstalk at the gate level.
arXiv Detail & Related papers (2020-12-21T14:20:40Z) - Quantum information processing with bosonic qubits in circuit QED [1.2891210250935146]
We review recent developments in the theory and implementation of quantum error correction with bosonic codes.
We report the progress made towards realizing fault-tolerant quantum information processing with cQED devices.
arXiv Detail & Related papers (2020-08-31T10:27:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.