論文の概要: Comparative Analysis of Segment Anything Model and U-Net for Breast
Tumor Detection in Ultrasound and Mammography Images
- arxiv url: http://arxiv.org/abs/2306.12510v2
- Date: Tue, 13 Feb 2024 07:52:17 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-14 19:41:08.563203
- Title: Comparative Analysis of Segment Anything Model and U-Net for Breast
Tumor Detection in Ultrasound and Mammography Images
- Title(参考訳): 超音波およびマンモグラフィー画像における乳腺腫瘍検出のためのセグメンテーションモデルとU-Netの比較解析
- Authors: Mohsen Ahmadi, Masoumeh Farhadi Nia, Sara Asgarian, Kasra Danesh,
Elyas Irankhah, Ahmad Gholizadeh Lonbar, Abbas Sharifi
- Abstract要約: この技術は、2つの高度なディープラーニングアーキテクチャ、すなわち U-Net と SAM を腫瘍セグメンテーションに用いている。
U-Netモデルは医用画像セグメンテーション用に特別に設計されている。
事前訓練されたSAMアーキテクチャには、空間的依存関係をキャプチャし、セグメンテーション結果を生成するメカニズムが組み込まれている。
- 参考スコア(独自算出の注目度): 0.15833270109954137
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this study, the main objective is to develop an algorithm capable of
identifying and delineating tumor regions in breast ultrasound (BUS) and
mammographic images. The technique employs two advanced deep learning
architectures, namely U-Net and pretrained SAM, for tumor segmentation. The
U-Net model is specifically designed for medical image segmentation and
leverages its deep convolutional neural network framework to extract meaningful
features from input images. On the other hand, the pretrained SAM architecture
incorporates a mechanism to capture spatial dependencies and generate
segmentation results. Evaluation is conducted on a diverse dataset containing
annotated tumor regions in BUS and mammographic images, covering both benign
and malignant tumors. This dataset enables a comprehensive assessment of the
algorithm's performance across different tumor types. Results demonstrate that
the U-Net model outperforms the pretrained SAM architecture in accurately
identifying and segmenting tumor regions in both BUS and mammographic images.
The U-Net exhibits superior performance in challenging cases involving
irregular shapes, indistinct boundaries, and high tumor heterogeneity. In
contrast, the pretrained SAM architecture exhibits limitations in accurately
identifying tumor areas, particularly for malignant tumors and objects with
weak boundaries or complex shapes. These findings highlight the importance of
selecting appropriate deep learning architectures tailored for medical image
segmentation. The U-Net model showcases its potential as a robust and accurate
tool for tumor detection, while the pretrained SAM architecture suggests the
need for further improvements to enhance segmentation performance.
- Abstract(参考訳): 本研究の目的は,乳房超音波(BUS)およびマンモグラフィー画像中の腫瘍領域を同定・デライン化できるアルゴリズムを開発することである。
この技術は、2つの高度なディープラーニングアーキテクチャ、すなわち U-Net と SAM を腫瘍セグメンテーションに用いている。
U-Netモデルは医用画像セグメンテーション用に特別に設計され、深層畳み込みニューラルネットワークフレームワークを利用して入力画像から有意義な特徴を抽出する。
一方、事前訓練されたSAMアーキテクチャでは、空間的依存関係をキャプチャし、セグメンテーション結果を生成するメカニズムが組み込まれている。
良性腫瘍と悪性腫瘍の両方をカバーするバス画像およびマンモグラフィ画像に注釈付き腫瘍領域を含む多彩なデータセット上で評価を行う。
このデータセットは、異なる腫瘍タイプにわたるアルゴリズムのパフォーマンスの包括的な評価を可能にする。
以上の結果から,U-Netモデルは,BUS画像とマンモグラフィ画像の両方の腫瘍領域を正確に同定し,セグメンテーションするために,事前訓練されたSAMアーキテクチャよりも優れていることが示された。
U-Netは不規則な形状、不明瞭な境界、高い腫瘍の不均一性を含む難治性症例において優れた性能を示す。
対照的に、事前訓練されたSAMアーキテクチャーは、特に悪性腫瘍や境界の弱い物や複雑な形状の物に対して、腫瘍領域を正確に識別する限界を示す。
これらの知見は,医用画像分割に適したディープラーニングアーキテクチャを選択することの重要性を強調した。
U-Netモデルは、腫瘍検出のための堅牢で正確なツールとしての可能性を示し、事前訓練されたSAMアーキテクチャは、セグメンテーション性能を向上させるためのさらなる改善の必要性を示唆している。
関連論文リスト
- Hybrid Multihead Attentive Unet-3D for Brain Tumor Segmentation [0.0]
脳腫瘍のセグメンテーションは、医療画像解析において重要な課題であり、脳腫瘍患者の診断と治療計画を支援する。
様々な深層学習技術がこの分野で大きな進歩を遂げてきたが、脳腫瘍形態の複雑で変動的な性質のため、精度の面ではまだ限界に直面している。
本稿では,脳腫瘍の正確なセグメンテーションにおける課題を解決するために,新しいハイブリッドマルチヘッド注意型U-Netアーキテクチャを提案する。
論文 参考訳(メタデータ) (2024-05-22T02:46:26Z) - Mask-Enhanced Segment Anything Model for Tumor Lesion Semantic Segmentation [48.107348956719775]
Mask-Enhanced SAM (M-SAM) は, 腫瘍の3次元セグメント化に適した革新的なアーキテクチャである。
本稿では,M-SAM内におけるMask-Enhanced Adapter (MEA) を提案する。
我々のM-SAMは高いセグメンテーション精度を達成し、またロバストな一般化を示す。
論文 参考訳(メタデータ) (2024-03-09T13:37:02Z) - Fully Automated Tumor Segmentation for Brain MRI data using Multiplanner
UNet [0.29998889086656577]
本研究は,3つの挑戦的データセットにまたがる腫瘍サブリージョンの分割におけるマルチプランナーU-Net(MPUnet)アプローチの有効性を評価する。
論文 参考訳(メタデータ) (2024-01-12T10:46:19Z) - Integrating Edges into U-Net Models with Explainable Activation Maps for
Brain Tumor Segmentation using MR Images [1.223779595809275]
医用画像のセマンティックセグメンテーションのためのU-Netとその変種は,本研究で良好な成果を上げている。
腫瘍の縁は、正確な診断、外科的精度、治療計画のための腫瘍領域と同じくらい重要である。
U-NetやV-Netのようなベースラインモデルでトレーニングされたエッジトレーニングモデルの性能は、ベースライン・オブ・ザ・アートモデルと同様のパフォーマンスを達成した。
論文 参考訳(メタデータ) (2024-01-02T17:30:45Z) - Style transfer between Microscopy and Magnetic Resonance Imaging via
Generative Adversarial Network in small sample size settings [49.84018914962972]
磁気共鳴イメージング(MRI)のクロスモーダル増強と、同じ組織サンプルに基づく顕微鏡イメージングが期待できる。
コンディショナル・ジェネレーティブ・逆境ネットワーク (cGAN) アーキテクチャを用いて, コーパス・カロサムのMRI画像から顕微鏡組織像を生成する方法を検討した。
論文 参考訳(メタデータ) (2023-10-16T13:58:53Z) - Brain tumor multi classification and segmentation in MRI images using
deep learning [3.1248717814228923]
この分類モデルはEfficientNetB1アーキテクチャに基づいており、画像は髄膜腫、グリオーマ、下垂体腺腫、腫瘍の4つのクラスに分類するよう訓練されている。
セグメンテーションモデルはU-Netアーキテクチャに基づいており、MRI画像から腫瘍を正確にセグメンテーションするように訓練されている。
論文 参考訳(メタデータ) (2023-04-20T01:32:55Z) - Global Guidance Network for Breast Lesion Segmentation in Ultrasound
Images [84.03487786163781]
我々は,大域的誘導ブロック(GGB)と乳房病変境界検出モジュールを備えた深部畳み込みニューラルネットワークを開発した。
当社のネットワークは、乳房超音波病変分割における他の医療画像分割方法および最近のセマンティックセグメンテーション方法よりも優れています。
論文 参考訳(メタデータ) (2021-04-05T13:15:22Z) - Few-shot Medical Image Segmentation using a Global Correlation Network
with Discriminative Embedding [60.89561661441736]
医療画像分割のための新しい手法を提案する。
深層畳み込みネットワークを用いた数ショット画像セグメンタを構築します。
深層埋め込みの識別性を高め,同一クラスの特徴領域のクラスタリングを促進する。
論文 参考訳(メタデータ) (2020-12-10T04:01:07Z) - ESTAN: Enhanced Small Tumor-Aware Network for Breast Ultrasound Image
Segmentation [0.0]
本稿では,乳腺腫瘍を正確に分類するための新しいディープニューラルネットワークアーキテクチャであるESTAN(Enhanced Small tumor-Aware Network)を提案する。
ESTANは、2つのエンコーダを導入し、異なるスケールで画像コンテキスト情報を抽出し、フューズする。
論文 参考訳(メタデータ) (2020-09-27T16:42:59Z) - Spectral-Spatial Recurrent-Convolutional Networks for In-Vivo
Hyperspectral Tumor Type Classification [49.32653090178743]
ハイパースペクトル画像とディープラーニングを用いたin-vivo腫瘍型分類の可能性を示した。
我々の最良のモデルは76.3%のAUCを達成し、従来の学習手法とディープラーニング手法を著しく上回っている。
論文 参考訳(メタデータ) (2020-07-02T12:00:53Z) - Stan: Small tumor-aware network for breast ultrasound image segmentation [68.8204255655161]
本研究では,小腫瘍認識ネットワーク(Small tumor-Aware Network,STAN)と呼ばれる新しいディープラーニングアーキテクチャを提案する。
提案手法は, 乳腺腫瘍の分節化における最先端のアプローチよりも優れていた。
論文 参考訳(メタデータ) (2020-02-03T22:25:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。