論文の概要: Hybrid Multihead Attentive Unet-3D for Brain Tumor Segmentation
- arxiv url: http://arxiv.org/abs/2405.13304v1
- Date: Wed, 22 May 2024 02:46:26 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-25 01:34:09.719441
- Title: Hybrid Multihead Attentive Unet-3D for Brain Tumor Segmentation
- Title(参考訳): 脳腫瘍分離のためのハイブリッドマルチヘッド検出Unet-3D
- Authors: Muhammad Ansab Butt, Absaar Ul Jabbar,
- Abstract要約: 脳腫瘍のセグメンテーションは、医療画像解析において重要な課題であり、脳腫瘍患者の診断と治療計画を支援する。
様々な深層学習技術がこの分野で大きな進歩を遂げてきたが、脳腫瘍形態の複雑で変動的な性質のため、精度の面ではまだ限界に直面している。
本稿では,脳腫瘍の正確なセグメンテーションにおける課題を解決するために,新しいハイブリッドマルチヘッド注意型U-Netアーキテクチャを提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Brain tumor segmentation is a critical task in medical image analysis, aiding in the diagnosis and treatment planning of brain tumor patients. The importance of automated and accurate brain tumor segmentation cannot be overstated. It enables medical professionals to precisely delineate tumor regions, assess tumor growth or regression, and plan targeted treatments. Various deep learning-based techniques proposed in the literature have made significant progress in this field, however, they still face limitations in terms of accuracy due to the complex and variable nature of brain tumor morphology. In this research paper, we propose a novel Hybrid Multihead Attentive U-Net architecture, to address the challenges in accurate brain tumor segmentation, and to capture complex spatial relationships and subtle tumor boundaries. The U-Net architecture has proven effective in capturing contextual information and feature representations, while attention mechanisms enhance the model's ability to focus on informative regions and refine the segmentation boundaries. By integrating these two components, our proposed architecture improves accuracy in brain tumor segmentation. We test our proposed model on the BraTS 2020 benchmark dataset and compare its performance with the state-of-the-art well-known SegNet, FCN-8s, and Dense121 U-Net architectures. The results show that our proposed model outperforms the others in terms of the evaluated performance metrics.
- Abstract(参考訳): 脳腫瘍のセグメンテーションは、医療画像解析において重要な課題であり、脳腫瘍患者の診断と治療計画を支援する。
自動化された正確な脳腫瘍セグメンテーションの重要性は過大評価できない。
医療専門家は腫瘍領域を正確に切り離し、腫瘍の成長または退縮を評価し、標的とする治療を計画できる。
この分野では様々な深層学習に基づく手法が大きな進歩を遂げているが、脳腫瘍形態の複雑で変動的な性質のため、精度の面ではまだ限界に直面している。
本稿では,脳腫瘍の正確なセグメンテーションの課題に対処し,複雑な空間的関係と微妙な腫瘍境界を捉えるために,新しいハイブリッドマルチヘッド監視型U-Netアーキテクチャを提案する。
U-Netアーキテクチャは、コンテキスト情報と特徴表現をキャプチャする上で有効であることが証明され、一方で注意機構は、情報領域に集中し、セグメンテーション境界を洗練するモデルの能力を高める。
これら2つの要素を統合することで,脳腫瘍のセグメント化の精度が向上する。
提案したモデルをBraTS 2020ベンチマークデータセット上でテストし,その性能を最先端のSegNet,FCN-8s,Dense121 U-Netアーキテクチャと比較した。
その結果,評価結果から,提案モデルが他のモデルよりも優れていることがわかった。
関連論文リスト
- Enhancing Brain Tumor Classification Using TrAdaBoost and Multi-Classifier Deep Learning Approaches [0.0]
脳腫瘍は、急速な成長と転移の可能性のために深刻な健康上の脅威となる。
本研究の目的は,脳腫瘍分類の効率と精度を向上させることである。
我々のアプローチは、ViT(Vision Transformer)、Capsule Neural Network(CapsNet)、ResNet-152やVGG16といった畳み込みニューラルネットワーク(CNN)など、最先端のディープラーニングアルゴリズムを組み合わせる。
論文 参考訳(メタデータ) (2024-10-31T07:28:06Z) - Fully Automated Tumor Segmentation for Brain MRI data using Multiplanner
UNet [0.29998889086656577]
本研究は,3つの挑戦的データセットにまたがる腫瘍サブリージョンの分割におけるマルチプランナーU-Net(MPUnet)アプローチの有効性を評価する。
論文 参考訳(メタデータ) (2024-01-12T10:46:19Z) - UniBrain: Universal Brain MRI Diagnosis with Hierarchical
Knowledge-enhanced Pre-training [66.16134293168535]
我々はUniBrainと呼ばれるユニバーサル脳MRI診断のための階層的知識強化事前訓練フレームワークを提案する。
具体的には、UniBrainは、定期的な診断から24,770のイメージレポートペアの大規模なデータセットを活用する。
論文 参考訳(メタデータ) (2023-09-13T09:22:49Z) - Automated Ensemble-Based Segmentation of Adult Brain Tumors: A Novel
Approach Using the BraTS AFRICA Challenge Data [0.0]
3つのコアアーキテクチャに基づく11種類のユニークなバリエーションからなるアンサンブル手法を提案する。
その結果,異なるアーキテクチャを組み合わせるアンサンブルアプローチが単一モデルより優れていることがわかった。
これらの結果は、脳腫瘍を正確に分類する上での、調整された深層学習技術の可能性を裏付けるものである。
論文 参考訳(メタデータ) (2023-08-14T15:34:22Z) - Automated ensemble method for pediatric brain tumor segmentation [0.0]
本研究では,ONet と UNet の修正版を用いた新しいアンサンブル手法を提案する。
データ拡張により、さまざまなスキャンプロトコル間の堅牢性と精度が保証される。
以上の結果から,この高度なアンサンブルアプローチは診断精度の向上に期待できる可能性が示唆された。
論文 参考訳(メタデータ) (2023-08-14T15:29:32Z) - Patched Diffusion Models for Unsupervised Anomaly Detection in Brain MRI [55.78588835407174]
本稿では,正常脳解剖のパッチベース推定法として拡散モデルの生成タスクを再構築する手法を提案する。
腫瘍と多発性硬化症について検討し,既存のベースラインと比較して25.1%の改善がみられた。
論文 参考訳(メタデータ) (2023-03-07T09:40:22Z) - EMT-NET: Efficient multitask network for computer-aided diagnosis of
breast cancer [58.720142291102135]
乳腺腫瘍の分類と分別を同時に行うための,効率的で軽量な学習アーキテクチャを提案する。
腫瘍分類ネットワークにセグメンテーションタスクを組み込むことにより,腫瘍領域に着目したバックボーンネットワークで表現を学習する。
腫瘍分類の精度、感度、特異性はそれぞれ88.6%、94.1%、85.3%である。
論文 参考訳(メタデータ) (2022-01-13T05:24:40Z) - Cross-Modality Deep Feature Learning for Brain Tumor Segmentation [158.8192041981564]
本稿では, マルチモーダルMRIデータから脳腫瘍を抽出するクロスモーダルディープ・フィーチャーラーニング・フレームワークを提案する。
中心となる考え方は、不十分なデータスケールを補うために、マルチモダリティデータにまたがる豊富なパターンをマイニングすることだ。
on the BraTS benchmarks, this proposed cross-modality deep feature learning framework could effective improve the brain tumor segmentation performance。
論文 参考訳(メタデータ) (2022-01-07T07:46:01Z) - Dilated Inception U-Net (DIU-Net) for Brain Tumor Segmentation [0.9176056742068814]
U-Netに基づく新しいエンド・ツー・エンド脳腫瘍セグメンテーションアーキテクチャを提案する。
提案モデルでは, 腫瘍コアと全腫瘍セグメンテーションについて, 最先端のU-Netモデルよりも有意に優れた性能を示した。
論文 参考訳(メタデータ) (2021-08-15T16:04:09Z) - Triplet Contrastive Learning for Brain Tumor Classification [99.07846518148494]
本稿では,脳腫瘍の深層埋め込みを直接学習する手法を提案する。
本手法は,27種類の腫瘍群からなる広範囲な脳腫瘍データセットを用いて評価し,そのうち13種は稀である。
論文 参考訳(メタデータ) (2021-08-08T11:26:34Z) - Stan: Small tumor-aware network for breast ultrasound image segmentation [68.8204255655161]
本研究では,小腫瘍認識ネットワーク(Small tumor-Aware Network,STAN)と呼ばれる新しいディープラーニングアーキテクチャを提案する。
提案手法は, 乳腺腫瘍の分節化における最先端のアプローチよりも優れていた。
論文 参考訳(メタデータ) (2020-02-03T22:25:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。