論文の概要: Adaptive Compression in Federated Learning via Side Information
- arxiv url: http://arxiv.org/abs/2306.12625v3
- Date: Mon, 22 Apr 2024 00:14:54 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-24 01:02:16.640877
- Title: Adaptive Compression in Federated Learning via Side Information
- Title(参考訳): 側面情報を用いたフェデレーション学習における適応圧縮
- Authors: Berivan Isik, Francesco Pase, Deniz Gunduz, Sanmi Koyejo, Tsachy Weissman, Michele Zorzi,
- Abstract要約: 約$D_KL(q_phi(n) p_theta$ ビットの通信を必要とするフレームワークを提案する。
私たちは、我々のメソッドを既存の圧縮フレームワークに組み込むことで、以前の作業の最大8,2500ドル(約8,500円)の精度で、同じ(そしてしばしば高い)テストの精度を達成することができることを示しています。
- 参考スコア(独自算出の注目度): 28.401993810064255
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The high communication cost of sending model updates from the clients to the server is a significant bottleneck for scalable federated learning (FL). Among existing approaches, state-of-the-art bitrate-accuracy tradeoffs have been achieved using stochastic compression methods -- in which the client $n$ sends a sample from a client-only probability distribution $q_{\phi^{(n)}}$, and the server estimates the mean of the clients' distributions using these samples. However, such methods do not take full advantage of the FL setup where the server, throughout the training process, has side information in the form of a global distribution $p_{\theta}$ that is close to the clients' distribution $q_{\phi^{(n)}}$ in Kullback-Leibler (KL) divergence. In this work, we exploit this closeness between the clients' distributions $q_{\phi^{(n)}}$'s and the side information $p_{\theta}$ at the server, and propose a framework that requires approximately $D_{KL}(q_{\phi^{(n)}}|| p_{\theta})$ bits of communication. We show that our method can be integrated into many existing stochastic compression frameworks to attain the same (and often higher) test accuracy with up to $82$ times smaller bitrate than the prior work -- corresponding to 2,650 times overall compression.
- Abstract(参考訳): クライアントからサーバにモデル更新を送信する際の通信コストは、スケーラブルなフェデレーションラーニング(FL)にとって大きなボトルネックとなります。
クライアント$n$は、クライアントのみの確率分布$q_{\phi^{(n)}}$からサンプルを送り、サーバはこれらのサンプルを使用してクライアントの分布の平均を推定する。
しかしながら、これらの手法は、トレーニングプロセスを通してサーバがクライアントの分散である$q_{\phi^{(n)}}$ in Kullback-Leibler (KL) の分散に近いグローバルディストリビューション$p_{\theta}$のサイド情報を持つようなFLセットアップを完全には利用しない。
本稿では、クライアントのディストリビューションである$q_{\phi^{(n)}}$'sとサーバのサイド情報$p_{\theta}$の近さを利用して、約$D_{KL}(q_{\phi^{(n)}}|| p_{\theta})$ビットの通信を必要とするフレームワークを提案する。
我々は,提案手法を既存の確率的圧縮フレームワークに組み込んで,前処理の最大8,200ドル分のビットレートで同じ(高頻度で)テスト精度を達成できることを示し,圧縮全体の2,650倍に対応する。
関連論文リスト
- Byzantine-Robust Federated Learning: Impact of Client Subsampling and Local Updates [11.616782769625003]
逆境(エム・ビザンティン)のクライアントは、連邦学習(FL)を任意に操作する傾向がある。
学習精度の向上は, サブサンプルクライアント数に対して著しく低下することを示す。
また、注意深いステップ選択の下では、ビザンティンのクライアントによる学習エラーは局所的なステップの数とともに減少する。
論文 参考訳(メタデータ) (2024-02-20T07:40:11Z) - Towards Instance-adaptive Inference for Federated Learning [80.38701896056828]
Federated Learning(FL)は、複数のクライアントがローカルトレーニングを集約することで、強力なグローバルモデルを学ぶことができる分散学習パラダイムである。
本稿では,FedInsという新しいFLアルゴリズムを提案する。
我々のFedInsは、Tiny-ImageNet上での通信コストが15%未満で、トップパフォーマンスの手法に対して6.64%の改善など、最先端のFLアルゴリズムよりも優れていることを示す。
論文 参考訳(メタデータ) (2023-08-11T09:58:47Z) - Timely Asynchronous Hierarchical Federated Learning: Age of Convergence [59.96266198512243]
クライアント-エッジ-クラウドフレームワークを用いた非同期階層型フェデレーション学習環境について検討する。
クライアントはトレーニングされたパラメータをエッジサーバと交換し、ローカルに集約されたモデルを更新する。
各クライアントの目標は、クライアントのタイムラインを維持しながら、グローバルモデルに収束することだ。
論文 参考訳(メタデータ) (2023-06-21T17:39:16Z) - Towards Bias Correction of FedAvg over Nonuniform and Time-Varying
Communications [26.597515045714502]
Federated Learning(FL)は、パラメータサーバ(PS)とクライアントのコレクションが協調して、グローバルな目的を通じてモデルをトレーニングする分散学習フレームワークである。
チャネル条件が時間とともに変化している場合、FedFederated Postponedグローバルモデルは、ゴシップ型情報混合エラーを延期しないことを示す。
論文 参考訳(メタデータ) (2023-06-01T01:52:03Z) - Privacy Amplification via Compression: Achieving the Optimal
Privacy-Accuracy-Communication Trade-off in Distributed Mean Estimation [20.909302074826666]
プライバシとコミュニケーションの制約は、連邦学習(FL)と分析(FA)の2つの主要なボトルネックである
それぞれのクライアントが$Thetaleft(n minleft(varepsilon, varepsilon2right)$ bits for FL と $Thetaleft(logleft(minleft(varepsilon, varepsilon2right)$)$ bits for FA の送信に十分であることを示す。
論文 参考訳(メタデータ) (2023-04-04T05:37:17Z) - Stochastic Approximation Approaches to Group Distributionally Robust
Optimization [96.26317627118912]
群分散ロバスト最適化(GDRO)
オンライン学習技術は、各ラウンドに必要なサンプル数をm$から1$に減らし、同じサンプルを保持する。
分布依存収束率を導出できる重み付きGDROの新規な定式化。
論文 参考訳(メタデータ) (2023-02-18T09:24:15Z) - Federated Learning with Regularized Client Participation [1.433758865948252]
Federated Learning(FL)は、複数のクライアントが協力して機械学習タスクを解決する分散機械学習アプローチである。
FLの主な課題の1つは、多くのクライアントがトレーニングプロセスに関与しているときに発生する部分的な参加の問題である。
本稿では,新しい手法を提案し,新しいクライアント参加方式を設計する。
論文 参考訳(メタデータ) (2023-02-07T18:26:07Z) - Optimizing Server-side Aggregation For Robust Federated Learning via
Subspace Training [80.03567604524268]
クライアント間の非IIDデータ分散と中毒攻撃は、現実世界のフェデレーション学習システムにおける2つの大きな課題である。
サーバ側集約プロセスを最適化する汎用的なアプローチであるSmartFLを提案する。
本稿では,SmartFLの収束と一般化能力に関する理論的解析を行う。
論文 参考訳(メタデータ) (2022-11-10T13:20:56Z) - Rate-Distortion Theoretic Bounds on Generalization Error for Distributed
Learning [9.00236182523638]
本稿では,統計的分散学習アルゴリズムの一般化誤差の新しい上限を確立するために,レート歪み理論のツールを用いる。
境界は各クライアントのアルゴリズムの圧縮性に依存し、他のクライアントのアルゴリズムは圧縮されない。
論文 参考訳(メタデータ) (2022-06-06T13:21:52Z) - A Bayesian Federated Learning Framework with Online Laplace
Approximation [144.7345013348257]
フェデレートラーニングは、複数のクライアントが協力してグローバルに共有されたモデルを学ぶことを可能にする。
クライアント側とサーバ側の両方の後方部を近似するために,オンラインラプラス近似を用いた新しいFLフレームワークを提案する。
提案手法の利点を実証し,いくつかのベンチマークで最新の結果を得た。
論文 参考訳(メタデータ) (2021-02-03T08:36:58Z) - Timely Communication in Federated Learning [65.1253801733098]
我々は,パラメータサーバ(PS)が,クラウドサーバにクライアントデータを集中的に格納することなく,$n$クライアントを用いてグローバルモデルを訓練するグローバルラーニングフレームワークを検討する。
提案されたスキームでは、各イテレーションでPSは$m$のクライアントを待ち、現在のモデルを送信する。
各クライアントが経験する情報の平均年齢を見つけ、与えられた$n$の年齢最適値である$m$と$k$を数値的に特徴付ける。
論文 参考訳(メタデータ) (2020-12-31T18:52:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。