論文の概要: Rate-Distortion Theoretic Bounds on Generalization Error for Distributed
Learning
- arxiv url: http://arxiv.org/abs/2206.02604v1
- Date: Mon, 6 Jun 2022 13:21:52 GMT
- ステータス: 処理完了
- システム内更新日: 2022-06-07 22:40:18.474666
- Title: Rate-Distortion Theoretic Bounds on Generalization Error for Distributed
Learning
- Title(参考訳): 分散学習における一般化誤差のレートゆらぎ理論境界
- Authors: Milad Sefidgaran, Romain Chor, Abdellatif Zaidi
- Abstract要約: 本稿では,統計的分散学習アルゴリズムの一般化誤差の新しい上限を確立するために,レート歪み理論のツールを用いる。
境界は各クライアントのアルゴリズムの圧縮性に依存し、他のクライアントのアルゴリズムは圧縮されない。
- 参考スコア(独自算出の注目度): 9.00236182523638
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper, we use tools from rate-distortion theory to establish new
upper bounds on the generalization error of statistical distributed learning
algorithms. Specifically, there are $K$ clients whose individually chosen
models are aggregated by a central server. The bounds depend on the
compressibility of each client's algorithm while keeping other clients'
algorithms un-compressed, and leverage the fact that small changes in each
local model change the aggregated model by a factor of only $1/K$. Adopting a
recently proposed approach by Sefidgaran et al., and extending it suitably to
the distributed setting, this enables smaller rate-distortion terms which are
shown to translate into tighter generalization bounds. The bounds are then
applied to the distributed support vector machines (SVM), suggesting that the
generalization error of the distributed setting decays faster than that of the
centralized one with a factor of $\mathcal{O}(\log(K)/\sqrt{K})$. This finding
is validated also experimentally. A similar conclusion is obtained for a
multiple-round federated learning setup where each client uses stochastic
gradient Langevin dynamics (SGLD).
- Abstract(参考訳): 本稿では,統計的分散学習アルゴリズムの一般化誤差の新しい上限を確立するために,レート歪み理論のツールを用いる。
具体的には、個別に選択したモデルを中央サーバに集約した$k$クライアントがあります。
境界は、他のクライアントのアルゴリズムを圧縮せずに、各クライアントのアルゴリズムの圧縮可能性に依存し、各ローカルモデルの小さな変更が集約されたモデルをわずか1/k$で変更するという事実を活用する。
sefidgaranらによって最近提案されたアプローチを採用し、分散設定に適宜拡張することで、より厳密な一般化境界に翻訳されるより小さなレートゆがみ項を可能にする。
境界は、分散サポートベクターマシン(svm)に適用され、分散設定の一般化誤差は、$\mathcal{o}(\log(k)/\sqrt{k})$の係数を持つ集中型ベクターマシンよりも早く減衰することを示唆している。
この発見も実験的に検証されている。
同様の結論は、各クライアントが確率的勾配ランジュバンダイナミクス(sgld)を使用する、複数ラウンドのフェデレーション学習セットアップに対して得られる。
関連論文リスト
- Distributed Extra-gradient with Optimal Complexity and Communication
Guarantees [60.571030754252824]
複数のプロセッサ/ワーカー/クライアントがローカルなデュアルベクトルにアクセス可能なマルチGPU設定において、モノトン変分不等式(VI)問題を考察する。
モノトーンVI問題に対するデファクトアルゴリズムであるExtra-gradientは、通信効率が良くないように設計されている。
そこで本稿では,VI の解法に適した非バイアスで適応的な圧縮手法である量子化一般化外部勾配 (Q-GenX) を提案する。
論文 参考訳(メタデータ) (2023-08-17T21:15:04Z) - Compressed and distributed least-squares regression: convergence rates
with applications to Federated Learning [9.31522898261934]
機械学習の勾配アルゴリズムに対する圧縮の影響について検討する。
いくつかの非バイアス圧縮演算子間の収束率の差を強調した。
我々はその結果を連合学習の事例にまで拡張する。
論文 参考訳(メタデータ) (2023-08-02T18:02:00Z) - Decentralized Randomly Distributed Multi-agent Multi-armed Bandit with
Heterogeneous Rewards [14.822625665220068]
環境によって提供される時間依存ランダムグラフによって複数のクライアントが接続される分散マルチエージェントマルチアームバンディット問題について検討する。
目標は、コラボレーションを通じてシステム全体の後悔を最小化することです。
論文 参考訳(メタデータ) (2023-06-08T22:37:24Z) - FedHB: Hierarchical Bayesian Federated Learning [11.936836827864095]
フェデレートラーニング(FL)に対する新しい階層的ベイズ的アプローチを提案する。
本モデルは階層ベイズモデルを用いてクライアントの局所データの生成過程を合理的に記述する。
ブロック座標FLアルゴリズムは、O(sqrtt)$の速度で目的の最適値に収束することを示す。
論文 参考訳(メタデータ) (2023-05-08T18:21:41Z) - Beyond ADMM: A Unified Client-variance-reduced Adaptive Federated
Learning Framework [82.36466358313025]
我々はFedVRAと呼ばれる原始二重FLアルゴリズムを提案し、このアルゴリズムはグローバルモデルの分散還元レベルとバイアスを適応的に制御することができる。
半教師付き画像分類タスクに基づく実験は,既存の手法よりもFedVRAの方が優れていることを示す。
論文 参考訳(メタデータ) (2022-12-03T03:27:51Z) - Federated Learning Using Variance Reduced Stochastic Gradient for
Probabilistically Activated Agents [0.0]
本稿では,各エージェントが各反復において任意の選択の確率を持つような最適解に対して,分散低減と高速収束率の両方を達成する2層構造を持つフェデレートラーニング(FL)のアルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-10-25T22:04:49Z) - Generalization Bounds for Stochastic Gradient Descent via Localized
$\varepsilon$-Covers [16.618918548497223]
本稿では,SGDの軌道に局在する新しい被覆手法を提案する。
このローカライゼーションは、境界数によって測定されるアルゴリズム固有のクラスタリングを提供する。
これらの結果は様々な文脈で導き出され、既知の最先端のラベルレートが向上する。
論文 参考訳(メタデータ) (2022-09-19T12:11:07Z) - Faster One-Sample Stochastic Conditional Gradient Method for Composite
Convex Minimization [61.26619639722804]
滑らかで非滑らかな項の和として形成される凸有限サム目標を最小化するための条件勾配法(CGM)を提案する。
提案手法は, 平均勾配 (SAG) 推定器を備え, 1回に1回のサンプルしか必要としないが, より高度な分散低減技術と同等の高速収束速度を保証できる。
論文 参考訳(メタデータ) (2022-02-26T19:10:48Z) - A Unified Framework for Multi-distribution Density Ratio Estimation [101.67420298343512]
バイナリ密度比推定(DRE)は多くの最先端の機械学習アルゴリズムの基礎を提供する。
ブレグマン最小化の発散の観点から一般的な枠組みを開発する。
我々のフレームワークはバイナリDREでそれらのフレームワークを厳格に一般化する手法に導かれることを示す。
論文 参考訳(メタデータ) (2021-12-07T01:23:20Z) - Faster Non-Convex Federated Learning via Global and Local Momentum [57.52663209739171]
textttFedGLOMOは最初の(一階)FLtexttFedGLOMOアルゴリズムです。
クライアントとサーバ間の通信においても,我々のアルゴリズムは確実に最適である。
論文 参考訳(メタデータ) (2020-12-07T21:05:31Z) - Private Stochastic Non-Convex Optimization: Adaptive Algorithms and
Tighter Generalization Bounds [72.63031036770425]
有界非次元最適化のための差分プライベート(DP)アルゴリズムを提案する。
標準勾配法に対する経験的優位性について,2つの一般的なディープラーニング手法を実証する。
論文 参考訳(メタデータ) (2020-06-24T06:01:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。