Generalized Low-Rank Update: Model Parameter Bounds for Low-Rank
Training Data Modifications
- URL: http://arxiv.org/abs/2306.12670v1
- Date: Thu, 22 Jun 2023 05:00:11 GMT
- Title: Generalized Low-Rank Update: Model Parameter Bounds for Low-Rank
Training Data Modifications
- Authors: Hiroyuki Hanada, Noriaki Hashimoto, Kouichi Taji, Ichiro Takeuchi
- Abstract summary: We have developed an incremental machine learning (ML) method that efficiently obtains the optimal model when a small number of instances or features are added or removed.
This problem holds practical importance in model selection, such as cross-validation (CV) and feature selection.
We introduce a method called the Generalized Low-Rank Update (GLRU) which extends the low-rank update framework of linear estimators to ML methods formulated as a certain class of regularized empirical risk minimization.
- Score: 16.822770693792823
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this study, we have developed an incremental machine learning (ML) method
that efficiently obtains the optimal model when a small number of instances or
features are added or removed. This problem holds practical importance in model
selection, such as cross-validation (CV) and feature selection. Among the class
of ML methods known as linear estimators, there exists an efficient model
update framework called the low-rank update that can effectively handle changes
in a small number of rows and columns within the data matrix. However, for ML
methods beyond linear estimators, there is currently no comprehensive framework
available to obtain knowledge about the updated solution within a specific
computational complexity. In light of this, our study introduces a method
called the Generalized Low-Rank Update (GLRU) which extends the low-rank update
framework of linear estimators to ML methods formulated as a certain class of
regularized empirical risk minimization, including commonly used methods such
as SVM and logistic regression. The proposed GLRU method not only expands the
range of its applicability but also provides information about the updated
solutions with a computational complexity proportional to the amount of dataset
changes. To demonstrate the effectiveness of the GLRU method, we conduct
experiments showcasing its efficiency in performing cross-validation and
feature selection compared to other baseline methods.
Related papers
- Enhancing binary classification: A new stacking method via leveraging computational geometry [5.906199156511947]
This paper introduces a novel approach that integrates computational geometry techniques, specifically solving the maximum weighted rectangle problem, to develop a new meta-model for binary classification.
Our method is evaluated on multiple open datasets, with statistical analysis showing its stability and demonstrating improvements in accuracy.
Our method is highly applicable not only in stacking ensemble learning but also in various real-world applications, such as hospital health evaluation scoring and bank credit scoring systems.
arXiv Detail & Related papers (2024-10-30T06:11:08Z) - Adaptive debiased SGD in high-dimensional GLMs with streaming data [4.704144189806667]
We introduce a novel approach to online inference in high-dimensional generalized linear models.
Our method operates in a single-pass mode, significantly reducing both time and space complexity.
We demonstrate that our method, termed the Approximated Debiased Lasso (ADL), not only mitigates the need for the bounded individual probability condition but also significantly improves numerical performance.
arXiv Detail & Related papers (2024-05-28T15:36:48Z) - Consensus-Adaptive RANSAC [104.87576373187426]
We propose a new RANSAC framework that learns to explore the parameter space by considering the residuals seen so far via a novel attention layer.
The attention mechanism operates on a batch of point-to-model residuals, and updates a per-point estimation state to take into account the consensus found through a lightweight one-step transformer.
arXiv Detail & Related papers (2023-07-26T08:25:46Z) - When to Update Your Model: Constrained Model-based Reinforcement
Learning [50.74369835934703]
We propose a novel and general theoretical scheme for a non-decreasing performance guarantee of model-based RL (MBRL)
Our follow-up derived bounds reveal the relationship between model shifts and performance improvement.
A further example demonstrates that learning models from a dynamically-varying number of explorations benefit the eventual returns.
arXiv Detail & Related papers (2022-10-15T17:57:43Z) - An Accelerated Doubly Stochastic Gradient Method with Faster Explicit
Model Identification [97.28167655721766]
We propose a novel doubly accelerated gradient descent (ADSGD) method for sparsity regularized loss minimization problems.
We first prove that ADSGD can achieve a linear convergence rate and lower overall computational complexity.
arXiv Detail & Related papers (2022-08-11T22:27:22Z) - MACE: An Efficient Model-Agnostic Framework for Counterfactual
Explanation [132.77005365032468]
We propose a novel framework of Model-Agnostic Counterfactual Explanation (MACE)
In our MACE approach, we propose a novel RL-based method for finding good counterfactual examples and a gradient-less descent method for improving proximity.
Experiments on public datasets validate the effectiveness with better validity, sparsity and proximity.
arXiv Detail & Related papers (2022-05-31T04:57:06Z) - Generalised Latent Assimilation in Heterogeneous Reduced Spaces with
Machine Learning Surrogate Models [10.410970649045943]
We develop a system which combines reduced-order surrogate models with a novel data assimilation technique.
Generalised Latent Assimilation can benefit both the efficiency provided by the reduced-order modelling and the accuracy of data assimilation.
arXiv Detail & Related papers (2022-04-07T15:13:12Z) - Bayesian Active Learning for Discrete Latent Variable Models [19.852463786440122]
Active learning seeks to reduce the amount of data required to fit the parameters of a model.
latent variable models play a vital role in neuroscience, psychology, and a variety of other engineering and scientific disciplines.
arXiv Detail & Related papers (2022-02-27T19:07:12Z) - Learning to Refit for Convex Learning Problems [11.464758257681197]
We propose a framework to learn to estimate optimized model parameters for different training sets using neural networks.
We rigorously characterize the power of neural networks to approximate convex problems.
arXiv Detail & Related papers (2021-11-24T15:28:50Z) - Scalable Marginal Likelihood Estimation for Model Selection in Deep
Learning [78.83598532168256]
Marginal-likelihood based model-selection is rarely used in deep learning due to estimation difficulties.
Our work shows that marginal likelihoods can improve generalization and be useful when validation data is unavailable.
arXiv Detail & Related papers (2021-04-11T09:50:24Z) - Transfer Learning without Knowing: Reprogramming Black-box Machine
Learning Models with Scarce Data and Limited Resources [78.72922528736011]
We propose a novel approach, black-box adversarial reprogramming (BAR), that repurposes a well-trained black-box machine learning model.
Using zeroth order optimization and multi-label mapping techniques, BAR can reprogram a black-box ML model solely based on its input-output responses.
BAR outperforms state-of-the-art methods and yields comparable performance to the vanilla adversarial reprogramming method.
arXiv Detail & Related papers (2020-07-17T01:52:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.