論文の概要: Natural Language Generation for Advertising: A Survey
- arxiv url: http://arxiv.org/abs/2306.12719v1
- Date: Thu, 22 Jun 2023 07:52:34 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-23 15:04:28.340165
- Title: Natural Language Generation for Advertising: A Survey
- Title(参考訳): 広告のための自然言語生成:調査
- Authors: Soichiro Murakami, Sho Hoshino, Peinan Zhang
- Abstract要約: 自然言語生成手法は、広告主が制作するオンライン広告の数を増やすのに役立つ効果的なツールとして登場した。
この調査では、テンプレートベースのものから、ニューラルネットワークを用いた抽出的かつ抽象的なアプローチまで、このトピックに関する過去10年間の研究動向をレビューする。
- 参考スコア(独自算出の注目度): 1.7265013728930998
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Natural language generation methods have emerged as effective tools to help
advertisers increase the number of online advertisements they produce. This
survey entails a review of the research trends on this topic over the past
decade, from template-based to extractive and abstractive approaches using
neural networks. Additionally, key challenges and directions revealed through
the survey, including metric optimization, faithfulness, diversity,
multimodality, and the development of benchmark datasets, are discussed.
- Abstract(参考訳): 自然言語生成手法は、広告主が制作するオンライン広告の数を増やすための効果的なツールとして登場した。
この調査は、ニューラルネットワークを用いたテンプレートベースから抽出的、抽象的アプローチまで、過去10年間のこのトピックに関する研究トレンドのレビューを伴っている。
さらに、メトリック最適化、忠実性、多様性、マルチモダリティ、ベンチマークデータセットの開発など、調査を通じて明らかになった重要な課題と方向性について論じる。
関連論文リスト
- A Survey on Natural Language Counterfactual Generation [7.022371235308068]
自然言語のカウンターファクト生成は、修正されたテキストが別のクラスに分類されるように、与えられたテキストを最小限に修正することを目的としている。
生成手法を4つのグループに体系的に分類し、生成品質を評価するための指標を要約する新しい分類法を提案する。
論文 参考訳(メタデータ) (2024-07-04T15:13:59Z) - Large Language Models(LLMs) on Tabular Data: Prediction, Generation, and Understanding -- A Survey [17.19337964440007]
現在、この研究領域における主要なテクニック、メトリクス、データセット、モデル、最適化アプローチを要約し比較する包括的なレビューが欠如しています。
この調査は、これらの領域における最近の進歩を集約し、使用するデータセット、メトリクス、方法論の詳細な調査と分類を提供することによって、このギャップに対処することを目的としている。
既存の文献の強さ、限界、未探索領域、ギャップを識別し、この重要かつ急速に発展する分野における将来の研究の方向性についていくつかの洞察を提供する。
論文 参考訳(メタデータ) (2024-02-27T23:59:01Z) - A Survey on Data Selection for Language Models [148.300726396877]
データ選択方法は、トレーニングデータセットに含まれるデータポイントを決定することを目的としている。
ディープラーニングは、主に実証的な証拠によって駆動され、大規模なデータに対する実験は高価である。
広範なデータ選択研究のリソースを持つ組織はほとんどない。
論文 参考訳(メタデータ) (2024-02-26T18:54:35Z) - A Systematic Review of Data-to-Text NLG [2.4769539696439677]
高品質なテキストを生成する手法を探索し、テキスト生成における幻覚の課題に対処する。
テキスト品質の進歩にもかかわらず、このレビューは低リソース言語における研究の重要性を強調している。
論文 参考訳(メタデータ) (2024-02-13T14:51:45Z) - Trends in Integration of Knowledge and Large Language Models: A Survey and Taxonomy of Methods, Benchmarks, and Applications [41.24492058141363]
大規模言語モデル(LLM)は、様々な自然言語処理において優れた性能を示すが、時代遅れのデータやドメイン固有の制限から生じる問題の影響を受けやすい。
本稿では,手法,ベンチマーク,応用の分類など,知識モデルと大規模言語モデルの統合の動向を論じるレビューを提案する。
論文 参考訳(メタデータ) (2023-11-10T05:24:04Z) - Exploring Large Language Model for Graph Data Understanding in Online
Job Recommendations [63.19448893196642]
本稿では,大規模言語モデルが提供するリッチな文脈情報と意味表現を利用して行動グラフを解析する新しいフレームワークを提案する。
この機能を利用することで、個々のユーザに対してパーソナライズされた、正確なジョブレコメンデーションが可能になる。
論文 参考訳(メタデータ) (2023-07-10T11:29:41Z) - Towards Creativity Characterization of Generative Models via Group-based
Subset Scanning [64.6217849133164]
創造的プロセスを特定し,定量化し,特徴付けるグループベースサブセットスキャンを提案する。
創造的なサンプルは、データセット全体にわたる通常のサンプルや非創造的なサンプルよりも大きな異常のサブセットを生成する。
論文 参考訳(メタデータ) (2022-03-01T15:07:14Z) - A Survey on Retrieval-Augmented Text Generation [53.04991859796971]
Retrieval-augmented text generationは顕著な利点があり、多くのNLPタスクで最先端のパフォーマンスを実現している。
まず、検索拡張生成の一般的なパラダイムを強調し、異なるタスクに応じて注目すべきアプローチをレビューする。
論文 参考訳(メタデータ) (2022-02-02T16:18:41Z) - A Survey of Embedding Space Alignment Methods for Language and Knowledge
Graphs [77.34726150561087]
単語,文,知識グラフの埋め込みアルゴリズムに関する現在の研究状況について調査する。
本稿では、関連するアライメント手法の分類と、この研究分野で使用されるベンチマークデータセットについて論じる。
論文 参考訳(メタデータ) (2020-10-26T16:08:13Z) - Positioning yourself in the maze of Neural Text Generation: A
Task-Agnostic Survey [54.34370423151014]
本稿では, ストーリーテリング, 要約, 翻訳など, 世代ごとのタスクインパクトをリレーする手法の構成要素について検討する。
本稿では,学習パラダイム,事前学習,モデリングアプローチ,復号化,各分野における重要な課題について,命令的手法の抽象化を提案する。
論文 参考訳(メタデータ) (2020-10-14T17:54:42Z) - Beyond Leaderboards: A survey of methods for revealing weaknesses in
Natural Language Inference data and models [6.998536937701312]
近年、表面的な手がかりのために自然言語推論(NLI)データセットを分析する論文が増えている。
この構造化された調査は、モデルとデータセットの報告された弱点を分類することで、進化する研究領域の概要を提供する。
論文 参考訳(メタデータ) (2020-05-29T17:55:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。