論文の概要: A prior regularized full waveform inversion using generative diffusion
models
- arxiv url: http://arxiv.org/abs/2306.12776v1
- Date: Thu, 22 Jun 2023 10:10:34 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-23 14:57:28.489301
- Title: A prior regularized full waveform inversion using generative diffusion
models
- Title(参考訳): 生成拡散モデルを用いた事前正則化全波形インバージョン
- Authors: Fu Wang, Xinquan Huang, Tariq Alkhalifah
- Abstract要約: フルウェーブフォームインバージョン(FWI)は高分解能地下モデル推定を提供する可能性がある。
観測の限界、例えば、地域雑音、限られたショットや受信機、帯域制限データなどにより、FWIで所望の高解像度モデルを得るのは難しい。
生成拡散モデルにより正規化されたFWIの新しいパラダイムを提案する。
- 参考スコア(独自算出の注目度): 0.5156484100374059
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Full waveform inversion (FWI) has the potential to provide high-resolution
subsurface model estimations. However, due to limitations in observation, e.g.,
regional noise, limited shots or receivers, and band-limited data, it is hard
to obtain the desired high-resolution model with FWI. To address this
challenge, we propose a new paradigm for FWI regularized by generative
diffusion models. Specifically, we pre-train a diffusion model in a fully
unsupervised manner on a prior velocity model distribution that represents our
expectations of the subsurface and then adapt it to the seismic observations by
incorporating the FWI into the sampling process of the generative diffusion
models. What makes diffusion models uniquely appropriate for such an
implementation is that the generative process retains the form and dimensions
of the velocity model. Numerical examples demonstrate that our method can
outperform the conventional FWI with only negligible additional computational
cost. Even in cases of very sparse observations or observations with strong
noise, the proposed method could still reconstruct a high-quality subsurface
model. Thus, we can incorporate our prior expectations of the solutions in an
efficient manner. We further test this approach on field data, which
demonstrates the effectiveness of the proposed method.
- Abstract(参考訳): フルウェーブフォームインバージョン(FWI)は高分解能地下モデル推定を提供する可能性がある。
しかし、観測の限界、例えば地域騒音、限られたショットや受信機、帯域制限データなどにより、fwiで所望の高解像度モデルを得ることは困難である。
この課題に対処するために, 生成拡散モデルによって正規化されたfwiの新しいパラダイムを提案する。
具体的には,FWIを生成拡散モデルのサンプリングプロセスに組み込むことで,地表面の期待値を表す先行速度モデル分布に対して,完全に教師のない方法で拡散モデルを事前訓練し,地震観測に適応させる。
このような実装に拡散モデルが一意に適しているのは、生成過程が速度モデルの形状と次元を保持することである。
数値的な例から,本手法は計算コストを考慮しないだけで従来のFWIよりも優れていることを示す。
非常に希少な観測や強い雑音を伴う観測の場合であっても,提案手法は高品質な地下モデルを構築することができる。
したがって、ソリューションに対する以前の期待を効率的な方法で組み込むことができます。
提案手法の有効性を示すフィールドデータに対して,本手法をさらに検証する。
関連論文リスト
- Energy-Based Diffusion Language Models for Text Generation [126.23425882687195]
エネルギーベース拡散言語モデル(Energy-based Diffusion Language Model, EDLM)は、拡散ステップごとに全シーケンスレベルで動作するエネルギーベースモデルである。
我々のフレームワークは、既存の拡散モデルよりも1.3$times$のサンプリングスピードアップを提供する。
論文 参考訳(メタデータ) (2024-10-28T17:25:56Z) - Constrained Diffusion Models via Dual Training [80.03953599062365]
拡散プロセスは、トレーニングデータセットのバイアスを反映したサンプルを生成する傾向がある。
所望の分布に基づいて拡散制約を付与し,制約付き拡散モデルを構築する。
本稿では,制約付き拡散モデルを用いて,目的と制約の最適なトレードオフを実現する混合データ分布から新しいデータを生成することを示す。
論文 参考訳(メタデータ) (2024-08-27T14:25:42Z) - Learning Diffusion Priors from Observations by Expectation Maximization [6.224769485481242]
不完全および雑音のみから拡散モデルをトレーニングするための予測最大化アルゴリズムに基づく新しい手法を提案する。
提案手法は,非条件拡散モデルに対する改良された後続サンプリング方式の提案と動機付けである。
論文 参考訳(メタデータ) (2024-05-22T15:04:06Z) - Neural Flow Diffusion Models: Learnable Forward Process for Improved Diffusion Modelling [2.1779479916071067]
より広い範囲のプロセスをサポートすることで拡散モデルを強化する新しいフレームワークを提案する。
また,前処理を学習するための新しいパラメータ化手法を提案する。
結果はNFDMの汎用性と幅広い応用の可能性を評価する。
論文 参考訳(メタデータ) (2024-04-19T15:10:54Z) - Generative Modeling with Phase Stochastic Bridges [49.4474628881673]
拡散モデル(DM)は、連続入力のための最先端の生成モデルを表す。
我々はtextbfphase space dynamics に基づく新しい生成モデリングフレームワークを提案する。
我々のフレームワークは、動的伝播の初期段階において、現実的なデータポイントを生成する能力を示す。
論文 参考訳(メタデータ) (2023-10-11T18:38:28Z) - Stage-by-stage Wavelet Optimization Refinement Diffusion Model for
Sparse-View CT Reconstruction [14.037398189132468]
本稿では,Sparse-view CT再構成のためのSWORD(Stage-by-stage Optimization Refinement Diffusion)モデルを提案する。
具体的には、低周波および高周波生成モデルを統合する統一的な数学的モデルを構築し、最適化手順で解を実現する。
提案手法は,低周波発生,高周波高精細化,領域変換の3段階を含む,確立された最適化理論に根ざした。
論文 参考訳(メタデータ) (2023-08-30T10:48:53Z) - Semi-Implicit Denoising Diffusion Models (SIDDMs) [50.30163684539586]
Denoising Diffusion Probabilistic Models (DDPM)のような既存のモデルは、高品質で多様なサンプルを提供するが、本質的に多くの反復的なステップによって遅くなる。
暗黙的要因と明示的要因を一致させることにより、この問題に対処する新しいアプローチを導入する。
提案手法は拡散モデルに匹敵する生成性能と,少数のサンプリングステップを持つモデルに比較して非常に優れた結果が得られることを示す。
論文 参考訳(メタデータ) (2023-06-21T18:49:22Z) - ShiftDDPMs: Exploring Conditional Diffusion Models by Shifting Diffusion
Trajectories [144.03939123870416]
本稿では,前処理に条件を導入することで,新しい条件拡散モデルを提案する。
いくつかのシフト規則に基づいて各条件に対して排他的拡散軌跡を割り当てるために、余剰潜在空間を用いる。
我々は textbfShiftDDPMs と呼ぶメソッドを定式化し、既存のメソッドの統一的な視点を提供する。
論文 参考訳(メタデータ) (2023-02-05T12:48:21Z) - Fast Inference in Denoising Diffusion Models via MMD Finetuning [23.779985842891705]
拡散モデルの高速サンプリング法であるMDD-DDMを提案する。
我々のアプローチは、学習した分布を所定の予算のタイムステップで微調整するために、最大平均離散性(MMD)を使用するという考え方に基づいている。
提案手法は,広範に普及した拡散モデルで要求されるわずかな時間で高品質なサンプルを生成できることが示唆された。
論文 参考訳(メタデータ) (2023-01-19T09:48:07Z) - A Survey on Generative Diffusion Model [75.93774014861978]
拡散モデルは、深層生成モデルの新たなクラスである。
時間を要する反復生成過程や高次元ユークリッド空間への閉じ込めなど、いくつかの制限がある。
本調査では,拡散モデルの向上を目的とした高度な手法を多数提示する。
論文 参考訳(メタデータ) (2022-09-06T16:56:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。