論文の概要: Provable Maximum Entropy Manifold Exploration via Diffusion Models
- arxiv url: http://arxiv.org/abs/2506.15385v1
- Date: Wed, 18 Jun 2025 11:59:15 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-19 19:35:51.651451
- Title: Provable Maximum Entropy Manifold Exploration via Diffusion Models
- Title(参考訳): 拡散モデルによる最大エントロピー多様体探査
- Authors: Riccardo De Santi, Marin Vlastelica, Ya-Ping Hsieh, Zebang Shen, Niao He, Andreas Krause,
- Abstract要約: 探索は科学的な発見のような現実世界の意思決定問題を解決するために重要である。
本稿では,事前学習した拡散モデルにより暗黙的に定義された近似データ多様体に対して,探索をエントロピーとしてキャストする新しいフレームワークを提案する。
本研究では,事前学習した拡散モデルの逐次微調整として探索問題を解くミラー降下に基づくアルゴリズムを開発する。
- 参考スコア(独自算出の注目度): 58.89696361871563
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Exploration is critical for solving real-world decision-making problems such as scientific discovery, where the objective is to generate truly novel designs rather than mimic existing data distributions. In this work, we address the challenge of leveraging the representational power of generative models for exploration without relying on explicit uncertainty quantification. We introduce a novel framework that casts exploration as entropy maximization over the approximate data manifold implicitly defined by a pre-trained diffusion model. Then, we present a novel principle for exploration based on density estimation, a problem well-known to be challenging in practice. To overcome this issue and render this method truly scalable, we leverage a fundamental connection between the entropy of the density induced by a diffusion model and its score function. Building on this, we develop an algorithm based on mirror descent that solves the exploration problem as sequential fine-tuning of a pre-trained diffusion model. We prove its convergence to the optimal exploratory diffusion model under realistic assumptions by leveraging recent understanding of mirror flows. Finally, we empirically evaluate our approach on both synthetic and high-dimensional text-to-image diffusion, demonstrating promising results.
- Abstract(参考訳): 探索は、科学的な発見のような現実世界の意思決定問題を解決するために重要であり、その目的は、既存のデータ分布を模倣するのではなく、真に新しい設計を生成することである。
本研究では, 生成モデルの表現力を探索に活用する上で, 明確な不確実性定量化に頼ることなく, 課題に対処する。
本稿では,事前学習した拡散モデルにより暗黙的に定義された近似データ多様体上での探索をエントロピー最大化とする新しい枠組みを提案する。
そこで,本研究では,密度推定に基づく探索の新たな原則を提案する。
この問題を克服し、本手法を本当にスケーラブルにするために、拡散モデルによって誘導される密度のエントロピーとスコア関数との基本的な接続を利用する。
そこで我々は,ミラー降下に基づくアルゴリズムを開発し,事前学習した拡散モデルの逐次微調整として探索問題を解く。
我々は,ミラーフローの最近の理解を活用して,現実的な仮定の下での最適探索拡散モデルへの収束性を証明した。
最後に, 合成と高次元のテキスト・ツー・イメージ拡散に対するアプローチを実証的に評価し, 有望な結果を示した。
関連論文リスト
- Consistent World Models via Foresight Diffusion [56.45012929930605]
我々は、一貫した拡散に基づく世界モデルを学習する上で重要なボトルネックは、最適下予測能力にあると主張している。
本稿では,拡散に基づく世界モデリングフレームワークであるForesight Diffusion(ForeDiff)を提案する。
論文 参考訳(メタデータ) (2025-05-22T10:01:59Z) - Fast Diffusion EM: a diffusion model for blind inverse problems with
application to deconvolution [0.0]
現在の手法では、劣化が知られており、復元と多様性の点で印象的な結果をもたらすと仮定している。
本研究では、これらのモデルの効率を活用し、復元された画像と未知のパラメータを共同で推定する。
本手法は,拡散モデルから抽出したサンプルを用いて,問題の対数類似度を近似し,未知のモデルパラメータを推定する方法とを交互に比較する。
論文 参考訳(メタデータ) (2023-09-01T06:47:13Z) - A prior regularized full waveform inversion using generative diffusion
models [0.5156484100374059]
フルウェーブフォームインバージョン(FWI)は高分解能地下モデル推定を提供する可能性がある。
観測の限界、例えば、地域雑音、限られたショットや受信機、帯域制限データなどにより、FWIで所望の高解像度モデルを得るのは難しい。
生成拡散モデルにより正規化されたFWIの新しいパラダイムを提案する。
論文 参考訳(メタデータ) (2023-06-22T10:10:34Z) - Lipschitz Singularities in Diffusion Models [64.28196620345808]
拡散モデルは、零点付近の時間変数に関して、しばしばネットワークの無限のリプシッツ特性を示す。
ゼロ点近傍の拡散モデルのリプシッツ特異点を緩和する新しい手法 E-TSDM を提案する。
我々の研究は、一般拡散過程の理解を深め、拡散モデルの設計に関する洞察を提供するかもしれない。
論文 参考訳(メタデータ) (2023-06-20T03:05:28Z) - Reconstructing Graph Diffusion History from a Single Snapshot [87.20550495678907]
A single SnapsHot (DASH) から拡散履歴を再構築するための新しいバリセンターの定式化を提案する。
本研究では,拡散パラメータ推定のNP硬度により,拡散パラメータの推定誤差が避けられないことを証明する。
また、DITTO(Diffusion hitting Times with Optimal proposal)という効果的な解法も開発している。
論文 参考訳(メタデータ) (2023-06-01T09:39:32Z) - A Geometric Perspective on Diffusion Models [57.27857591493788]
本稿では,人気のある分散拡散型SDEのODEに基づくサンプリングについて検討する。
我々は、最適なODEベースのサンプリングと古典的な平均シフト(モード探索)アルゴリズムの理論的関係を確立する。
論文 参考訳(メタデータ) (2023-05-31T15:33:16Z) - Two-stage Denoising Diffusion Model for Source Localization in Graph
Inverse Problems [19.57064597050846]
ソースローカライゼーションは、グラフ情報拡散の逆問題である。
本稿では,2段階最適化フレームワークであるソースローカライゼーション・デノナイズ拡散モデル(SL-Diff)を提案する。
SL-Diffは広範囲な実験で適切なサンプリング時間内に優れた予測結果が得られる。
論文 参考訳(メタデータ) (2023-04-18T09:11:09Z) - Diffusion Models are Minimax Optimal Distribution Estimators [49.47503258639454]
拡散モデリングの近似と一般化能力について、初めて厳密な分析を行った。
実密度関数がベソフ空間に属し、経験値整合損失が適切に最小化されている場合、生成したデータ分布は、ほぼ最小の最適推定値が得られることを示す。
論文 参考訳(メタデータ) (2023-03-03T11:31:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。