論文の概要: Super-Resolution of BVOC Emission Maps Via Domain Adaptation
- arxiv url: http://arxiv.org/abs/2306.12796v1
- Date: Thu, 22 Jun 2023 10:59:15 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-23 14:44:58.036723
- Title: Super-Resolution of BVOC Emission Maps Via Domain Adaptation
- Title(参考訳): 領域適応によるbvocエミッションマップの超解像
- Authors: Antonio Giganti, Sara Mandelli, Paolo Bestagini, Marco Marcon, Stefano
Tubaro
- Abstract要約: ディープラーニング(DL)に基づく超解法(SR)法が提案されている。
本研究は,衛星観測から得られた高分解能発光マップの超解像化を目的として,数値シミュレーションにより得られた放射マップの情報を活用することを目的とする。
本研究では, シミュレーションおよび観測されたエミッションの数を系統的に変化させることで, 異なる段階におけるドメイン適応(DA)戦略の有効性を検討する。
- 参考スコア(独自算出の注目度): 17.819699053848197
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Enhancing the resolution of Biogenic Volatile Organic Compound (BVOC)
emission maps is a critical task in remote sensing. Recently, some
Super-Resolution (SR) methods based on Deep Learning (DL) have been proposed,
leveraging data from numerical simulations for their training process. However,
when dealing with data derived from satellite observations, the reconstruction
is particularly challenging due to the scarcity of measurements to train SR
algorithms with. In our work, we aim at super-resolving low resolution emission
maps derived from satellite observations by leveraging the information of
emission maps obtained through numerical simulations. To do this, we combine a
SR method based on DL with Domain Adaptation (DA) techniques, harmonizing the
different aggregation strategies and spatial information used in simulated and
observed domains to ensure compatibility. We investigate the effectiveness of
DA strategies at different stages by systematically varying the number of
simulated and observed emissions used, exploring the implications of data
scarcity on the adaptation strategies. To the best of our knowledge, there are
no prior investigations of DA in satellite-derived BVOC maps enhancement. Our
work represents a first step toward the development of robust strategies for
the reconstruction of observed BVOC emissions.
- Abstract(参考訳): 生体揮発性有機化合物(bvoc)の分解能向上はリモートセンシングにおいて重要な課題である。
近年,Deep Learning (DL) に基づく超解法 (SR) 手法が提案されている。
しかし、衛星観測から得られたデータを扱う場合、SRアルゴリズムを訓練するための測定が不足しているため、再構成は特に困難である。
本研究では,数値シミュレーションにより得られたエミッションマップの情報を活用し,衛星観測から得られた低分解能エミッションマップの超解像を目指す。
そこで我々は,DLに基づくSR手法とドメイン適応(DA)手法を併用し,シミュレーションおよび観測領域で使用される異なる集約戦略と空間情報を調和させて互換性を確保する。
シミュレーションおよび観測された排出量の数を体系的に変化させ,様々な段階におけるda戦略の有効性について検討し,適応戦略におけるデータ不足の影響について検討した。
我々の知る限りでは、衛星由来のBVOCマップ拡張におけるDAの事前調査は行われていない。
我々の研究は、観測されたbvoc排出の再構成のためのロバストな戦略の開発に向けた第一歩である。
関連論文リスト
- Degradation-Guided One-Step Image Super-Resolution with Diffusion Priors [75.24313405671433]
拡散に基づく画像超解像法 (SR) は、事前訓練された大規模なテキスト・画像拡散モデルを先行として活用することにより、顕著な成功を収めた。
本稿では,拡散型SR手法の効率問題に対処する新しい一段階SRモデルを提案する。
既存の微調整戦略とは異なり、SR専用の劣化誘導低ランク適応 (LoRA) モジュールを設計した。
論文 参考訳(メタデータ) (2024-09-25T16:15:21Z) - Multi-Modal Learning-based Reconstruction of High-Resolution Spatial
Wind Speed Fields [46.72819846541652]
本稿では,Variデータ同化とディープラーニングの概念に基づくフレームワークを提案する。
この枠組みは、海面風速に関する高解像度のリッチインタイムを回復するために応用される。
論文 参考訳(メタデータ) (2023-12-14T13:40:39Z) - SIRAN: Sinkhorn Distance Regularized Adversarial Network for DEM
Super-resolution using Discriminative Spatial Self-attention [5.178465447325005]
DEM(Digital Elevation Model)は、リモートセンシング領域において、表面標高情報に関連するさまざまなアプリケーションを分析し、探索するための重要な側面である。
本研究では,高分解能マルチスペクトル(MX)衛星画像を用いた高分解能DEMの生成について検討する。
本稿では,Sinkhorn 距離を従来の GAN に最適化することで,対角学習の安定性を向上する目的関数を提案する。
論文 参考訳(メタデータ) (2023-11-27T12:03:22Z) - Unsupervised Discovery of Interpretable Directions in h-space of
Pre-trained Diffusion Models [63.1637853118899]
本稿では,事前学習した拡散モデルのh空間における解釈可能な方向を特定するための,教師なしおよび学習に基づく最初の手法を提案する。
我々は、事前訓練された拡散モデルのh-スペースで動作するシフト制御モジュールを用いて、サンプルをシフトしたバージョンに操作する。
それらを共同で最適化することで、モデルは自然に絡み合った、解釈可能な方向を発見する。
論文 参考訳(メタデータ) (2023-10-15T18:44:30Z) - Guided Depth Map Super-resolution: A Survey [88.54731860957804]
誘導深度マップ超解像(GDSR)は、高分解能(HR)深度マップを低分解能(LR)観測から2枚のHRカラー画像の助けを借りて再構成することを目的としている。
近年,特に強力な深層学習技術を用いて,斬新で効果的なアプローチが多数提案されている。
この調査は、GDSRの最近の進歩に関する包括的調査を提示する試みである。
論文 参考訳(メタデータ) (2023-02-19T15:43:54Z) - Land Use Prediction using Electro-Optical to SAR Few-Shot Transfer
Learning [16.71560262537924]
深層学習法は、電気光学(EO)や合成開口レーダ(SAR)画像などの異なる衛星モードの分析を容易にする。
ニューラルネットワーク埋め込みの分布アライメントは,スライスされたワッサーシュタイン距離(SWD)損失を用いて,強力な伝達学習モデルを生成することができることを示す。
数ショットのローカル気候ゾーン(LCZ)予測への応用として、これらのネットワークは、多数のクラスを持つデータセット上で、複数の共通ベースラインより優れていることを示す。
論文 参考訳(メタデータ) (2022-12-04T22:41:25Z) - Multimodal learning-based inversion models for the space-time
reconstruction of satellite-derived geophysical fields [40.33123267556167]
各種の衛星センサーは、衛星軌道による異なるサンプリングパターンの観測データや、大気環境に対する感度を提供する。
本稿では,エンドツーエンドの学習手法がマルチモーダル・インバージョン問題に対処するための新しい手段を提供する方法について検討する。
本手法は,衛星から得られた海面温度画像から適切な情報を抽出し,衛星高度データからの海面電流の復元をいかに進めるかを示す。
論文 参考訳(メタデータ) (2022-03-20T20:37:03Z) - Context-Preserving Instance-Level Augmentation and Deformable
Convolution Networks for SAR Ship Detection [50.53262868498824]
ランダムな方向と部分的な情報損失によるSAR画像のターゲット形状の変形は、SAR船の検出において必須の課題である。
ターゲット内の部分的な情報損失に頑健なディープネットワークをトレーニングするためのデータ拡張手法を提案する。
論文 参考訳(メタデータ) (2022-02-14T07:01:01Z) - Structure-Preserving Image Super-Resolution [94.16949589128296]
単一画像超解像(SISR)の構造
近年の研究では、フォトリアリスティック画像の復元によるSISRの開発が進められている。
しかし、回収された画像にはいまだ望ましくない構造歪みがある。
論文 参考訳(メタデータ) (2021-09-26T08:48:27Z) - Deep learning for prediction of complex geology ahead of drilling [0.0]
意思決定支援システムは、大量のデータと解釈の複雑さに対処するのに役立つ。
彼らはリアルタイム測定を確率的地球モデルに同化し、最新のモデルを使って意思決定の推奨を行うことができる。
本稿では,ジオステアリング決定支援フレームワークに2つのML手法を導入する。
論文 参考訳(メタデータ) (2021-04-06T14:42:33Z) - CNN-based InSAR Coherence Classification [3.562355298993529]
畳み込みニューラルネットワーク(CNN)を導入し,コヒーレンスに基づく分類を改善し,非一貫性領域における誤分類を低減する。
トレーニングデータの知的前処理により,コヒーレンスに基づく分類の改善と,非コヒーレント領域における誤分類の低減に有効であることを示す。
論文 参考訳(メタデータ) (2020-01-20T03:25:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。