論文の概要: CNN-based InSAR Coherence Classification
- arxiv url: http://arxiv.org/abs/2001.06956v1
- Date: Mon, 20 Jan 2020 03:25:38 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-08 05:13:21.464337
- Title: CNN-based InSAR Coherence Classification
- Title(参考訳): CNNに基づくInSARコヒーレンス分類
- Authors: Subhayan Mukherjee, Aaron Zimmer, Xinyao Sun, Parwant Ghuman, and
Irene Cheng
- Abstract要約: 畳み込みニューラルネットワーク(CNN)を導入し,コヒーレンスに基づく分類を改善し,非一貫性領域における誤分類を低減する。
トレーニングデータの知的前処理により,コヒーレンスに基づく分類の改善と,非コヒーレント領域における誤分類の低減に有効であることを示す。
- 参考スコア(独自算出の注目度): 3.562355298993529
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Interferometric Synthetic Aperture Radar (InSAR) imagery based on microwaves
reflected off ground targets is becoming increasingly important in remote
sensing for ground movement estimation. However, the reflections are
contaminated by noise, which distorts the signal's wrapped phase. Demarcation
of image regions based on degree of contamination ("coherence") is an important
component of the InSAR processing pipeline. We introduce Convolutional Neural
Networks (CNNs) to this problem domain and show their effectiveness in
improving coherence-based demarcation and reducing misclassifications in
completely incoherent regions through intelligent preprocessing of training
data. Quantitative and qualitative comparisons prove superiority of proposed
method over three established methods.
- Abstract(参考訳): 地中移動推定のためのリモートセンシングにおいて,地中目標から反射するマイクロ波に基づく干渉計測合成開口レーダ(InSAR)画像の重要性が高まっている。
しかし、反射はノイズによって汚染され、シグナルの包み込み位相が歪む。
汚染度(コヒーレンス)に基づく画像領域の区切りは、InSAR処理パイプラインの重要なコンポーネントである。
本稿では,この問題領域に畳み込みニューラルネットワーク(cnns)を導入し,学習データのインテリジェントな前処理によるコヒーレンスに基づく境界分割の改善と完全非一貫性領域における誤分類の低減効果を示す。
定量的および定性的な比較は、3つの確立された方法よりも提案手法の方が優れていることを示す。
関連論文リスト
- Adaptive Residual Transformation for Enhanced Feature-Based OOD Detection in SAR Imagery [5.63530048112308]
実際の戦場シナリオにおける未知の標的の存在は避けられない。
この問題に対処するために、様々な機能ベースのアウト・オブ・ディストリビューションアプローチが開発されている。
我々は,特徴量に基づくOOD検出をクラス局所化された特徴量に基づくアプローチに変換することを提案する。
論文 参考訳(メタデータ) (2024-11-01T00:09:02Z) - Denoising as Adaptation: Noise-Space Domain Adaptation for Image Restoration [64.84134880709625]
拡散モデルを用いて,雑音空間を介して領域適応を行うことが可能であることを示す。
特に、補助的な条件入力が多段階の復調過程にどのように影響するかというユニークな性質を活用することにより、有意義な拡散損失を導出する。
拡散モデルにおけるチャネルシャッフル層や残留スワッピング型コントラスト学習などの重要な戦略を提案する。
論文 参考訳(メタデータ) (2024-06-26T17:40:30Z) - Unsupervised Domain Transfer with Conditional Invertible Neural Networks [83.90291882730925]
条件付き可逆ニューラルネットワーク(cINN)に基づくドメイン転送手法を提案する。
提案手法は本質的に,その可逆的アーキテクチャによるサイクル一貫性を保証し,ネットワークトレーニングを最大限効率的に行うことができる。
提案手法は,2つの下流分類タスクにおいて,現実的なスペクトルデータの生成を可能にし,その性能を向上する。
論文 参考訳(メタデータ) (2023-03-17T18:00:27Z) - SAR Despeckling using a Denoising Diffusion Probabilistic Model [52.25981472415249]
スペックルの存在は画像品質を劣化させ、SAR画像理解アプリケーションの性能に悪影響を及ぼす。
本稿では,SAR脱種のための拡散確率モデルであるSAR-DDPMを紹介する。
提案手法は, 最先端の切り離し法と比較して, 定量化と定性化の両面で有意な改善を実現している。
論文 参考訳(メタデータ) (2022-06-09T14:00:26Z) - Universal adversarial perturbation for remote sensing images [41.54094422831997]
本稿では,エンコーダ・デコーダネットワークとアテンション機構を組み合わせた新しい手法を提案する。
実験の結果、UAPはRSIを誤分類し、提案手法の攻撃成功率(ASR)は97.35%であることがわかった。
論文 参考訳(メタデータ) (2022-02-22T06:43:28Z) - Adversarial Domain Feature Adaptation for Bronchoscopic Depth Estimation [111.89519571205778]
そこで本研究では,深度推定のためのドメイン適応手法を提案する。
提案する2段階構造は,まず,ラベル付き合成画像を用いた深度推定ネットワークを教師付きで訓練する。
実験の結果,提案手法は実画像上でのネットワーク性能をかなりの差で向上させることがわかった。
論文 参考訳(メタデータ) (2021-09-24T08:11:34Z) - A SAR speckle filter based on Residual Convolutional Neural Networks [68.8204255655161]
本研究では,Convolutional Neural Networks(CNN)に基づく深層学習(DL)アルゴリズムを用いて,Sentinel-1データからスペックルノイズをフィルタリングする新しい手法を提案する。
得られた結果は、技術の現状と比較すると、ピーク信号対雑音比(PSNR)と構造類似度指数(SSIM)の点で明確な改善を示しています。
論文 参考訳(メタデータ) (2021-04-19T14:43:07Z) - ADRN: Attention-based Deep Residual Network for Hyperspectral Image
Denoising [52.01041506447195]
ノイズの多いHSIからクリーンなHSIへのマッピングを学習するために,注目に基づくディープ残差ネットワークを提案する。
実験の結果,提案手法は定量的および視覚的評価において最先端の手法よりも優れていた。
論文 参考訳(メタデータ) (2020-03-04T08:36:27Z) - An Unsupervised Generative Neural Approach for InSAR Phase Filtering and
Coherence Estimation [3.8218584696400484]
我々は,共同位相フィルタリングとコヒーレンス推定のためのCNNに基づく生成モデルであるGenInSARを提案する。
GenInSARの衛星とシミュレートされたノイズのあるInSAR画像に関する教師なしの訓練は、全残留量削減において他の関連手法よりも優れている。
Coherence Root-Mean-Squared-Error と Phase Cosine Error はそれぞれ、関連する方法と比較して平均 0.54, 0.07, 0.05 改善されている。
論文 参考訳(メタデータ) (2020-01-27T08:50:39Z) - CNN-based InSAR Denoising and Coherence Metric [4.051689818086047]
ノイズは衛星で受信されたマイクロ波反射を破損させ、信号のラップされた位相を汚染する。
畳み込みニューラルネットワーク(CNN)を導入し,InSAR画像復調フィルタの学習を行う。
オートエンコーダCNNアーキテクチャのInSAR画像復調フィルタへの応用について述べる。
論文 参考訳(メタデータ) (2020-01-20T03:20:29Z) - InSAR Phase Denoising: A Review of Current Technologies and Future
Directions [9.475024122649288]
インターフェロメトリ合成開口レーダ(InSAR)は情報取得の強化によるリモートセンシングにおいて強力なツールである。
干渉電図の位相分解は、トポグラフィーマッピングと変形モニタリングの必須ステップである。
本稿では,InSAR位相分解法の概要を概説し,確立されたアルゴリズムと新興アルゴリズムを4つの主要なカテゴリに分類する。
論文 参考訳(メタデータ) (2020-01-03T09:36:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。