StrainTensorNet: Predicting crystal structure elastic properties using
SE(3)-equivariant graph neural networks
- URL: http://arxiv.org/abs/2306.12818v2
- Date: Fri, 10 Nov 2023 09:49:38 GMT
- Title: StrainTensorNet: Predicting crystal structure elastic properties using
SE(3)-equivariant graph neural networks
- Authors: Teerachote Pakornchote, Annop Ektarawong, Thiparat Chotibut
- Abstract summary: We introduce a novel data-driven approach to efficiently predict the elastic properties of crystal structures.
This approach yields important scalar elastic moduli with the accuracy comparable to recent data-driven studies.
- Score: 1.9260081982051918
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Accurately predicting the elastic properties of crystalline solids is vital
for computational materials science. However, traditional atomistic scale ab
initio approaches are computationally intensive, especially for studying
complex materials with a large number of atoms in a unit cell. We introduce a
novel data-driven approach to efficiently predict the elastic properties of
crystal structures using SE(3)-equivariant graph neural networks (GNNs). This
approach yields important scalar elastic moduli with the accuracy comparable to
recent data-driven studies. Importantly, our symmetry-aware GNNs model also
enables the prediction of the strain energy density (SED) and the associated
elastic constants, the fundamental tensorial quantities that are significantly
influenced by a material's crystallographic group. The model consistently
distinguishes independent elements of SED tensors, in accordance with the
symmetry of the crystal structures. Finally, our deep learning model possesses
meaningful latent features, offering an interpretable prediction of the elastic
properties.
Related papers
- A Space Group Symmetry Informed Network for O(3) Equivariant Crystal Tensor Prediction [89.38877696273364]
We consider the prediction of general tensor properties of crystalline materials.
We propose a General Materials Network (GMTNet), which is carefully designed to satisfy the required symmetries.
Experimental results show that our GMTNet achieves promising performance on crystal tensors of various orders.
arXiv Detail & Related papers (2024-06-03T16:26:16Z) - Energy-conserving equivariant GNN for elasticity of lattice architected metamaterials [3.7852720324045444]
We generate a big dataset of structure-property relationships for strut-based lattices.
The dataset is made available to the community which can fuel the development of methods anchored in physical principles.
We present a higher-order GNN model trained on this dataset.
arXiv Detail & Related papers (2024-01-30T11:25:49Z) - Discovering Interpretable Physical Models using Symbolic Regression and
Discrete Exterior Calculus [55.2480439325792]
We propose a framework that combines Symbolic Regression (SR) and Discrete Exterior Calculus (DEC) for the automated discovery of physical models.
DEC provides building blocks for the discrete analogue of field theories, which are beyond the state-of-the-art applications of SR to physical problems.
We prove the effectiveness of our methodology by re-discovering three models of Continuum Physics from synthetic experimental data.
arXiv Detail & Related papers (2023-10-10T13:23:05Z) - DeepCrysTet: A Deep Learning Approach Using Tetrahedral Mesh for
Predicting Properties of Crystalline Materials [0.0]
We propose DeepCrysTet, a novel deep learning approach for predicting material properties.
DeepCrysTet uses crystal structures represented as a 3D tetrahedral mesh generated by Delaunay tetrahedralization.
Experiments show that DeepCrysTet significantly outperforms existing GNN models in classifying crystal structures and state-of-the-art performance in predicting elastic properties.
arXiv Detail & Related papers (2023-09-07T05:23:52Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
We develop an artificial intelligence framework which combines a neural network trained to mimic simulated data from a model Hamiltonian with automatic differentiation to recover unknown parameters from experimental data.
In doing so, we illustrate the ability to build and train a differentiable model only once, which then can be applied in real-time to multi-dimensional scattering data.
arXiv Detail & Related papers (2023-04-08T07:55:36Z) - Static, dynamic and stability analysis of multi-dimensional functional
graded plate with variable thickness using deep neural network [0.0]
The goal of this paper is to analyze and predict the central deflection, natural frequency, and critical buckling load of the multi-directional functionally graded (FG) plate.
The material properties are assumed to vary smoothly and continuously throughout three directions of the plate.
arXiv Detail & Related papers (2023-01-14T11:37:01Z) - MD-inferred neural network monoclinic finite-strain hyperelasticity
models for $\beta$-HMX: Sobolev training and validation against physical
constraints [2.3816618027381438]
We train and validate neural networks to predict the anisotropic elastic response of the monoclinic organic molecular crystal $beta$-HMX.
We compare the neural networks' training efficiency under different Sobolev constraints and assess the models' accuracy and robustness against MD benchmarks for $beta$-HMX.
arXiv Detail & Related papers (2021-11-29T23:38:31Z) - How to See Hidden Patterns in Metamaterials with Interpretable Machine
Learning [82.67551367327634]
We develop a new interpretable, multi-resolution machine learning framework for finding patterns in the unit-cells of materials.
Specifically, we propose two new interpretable representations of metamaterials, called shape-frequency features and unit-cell templates.
arXiv Detail & Related papers (2021-11-10T21:19:02Z) - A deep learning driven pseudospectral PCE based FFT homogenization
algorithm for complex microstructures [68.8204255655161]
It is shown that the proposed method is able to predict central moments of interest while being magnitudes faster to evaluate than traditional approaches.
It is shown, that the proposed method is able to predict central moments of interest while being magnitudes faster to evaluate than traditional approaches.
arXiv Detail & Related papers (2021-10-26T07:02:14Z) - Thermodynamics-based Artificial Neural Networks (TANN) for multiscale
modeling of materials with inelastic microstructure [0.0]
Multiscale, homogenization approaches are often used for performing reliable, accurate predictions of the macroscopic mechanical behavior of inelastic materials.
Data-driven approaches based on deep learning have risen as a promising alternative to replace ad-hoc laws and speed-up numerical methods.
Here, we propose Thermodynamics-based Artificial Neural Networks (TANN) for the modeling of mechanical materials with inelastic and complex microstructure.
arXiv Detail & Related papers (2021-08-30T11:50:38Z) - Parsimonious neural networks learn interpretable physical laws [77.34726150561087]
We propose parsimonious neural networks (PNNs) that combine neural networks with evolutionary optimization to find models that balance accuracy with parsimony.
The power and versatility of the approach is demonstrated by developing models for classical mechanics and to predict the melting temperature of materials from fundamental properties.
arXiv Detail & Related papers (2020-05-08T16:15:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.