論文の概要: An Interactive Interface for Novel Class Discovery in Tabular Data
- arxiv url: http://arxiv.org/abs/2306.12919v1
- Date: Thu, 22 Jun 2023 14:32:53 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-23 14:16:52.901259
- Title: An Interactive Interface for Novel Class Discovery in Tabular Data
- Title(参考訳): 表データにおける新しいクラス発見のための対話型インタフェース
- Authors: Colin Troisemaine, Joachim Flocon-Cholet, St\'ephane Gosselin,
Alexandre Reiffers-Masson, Sandrine Vaton, Vincent Lemaire
- Abstract要約: 新規クラスディスカバリー(英: Novel Class Discovery、NCD)とは、異なるクラスがラベル付けされていることを考慮し、ラベル付けされていないセットで新しいクラスを発見しようとする問題である。
現在提案されているNCD法の大部分は画像データにのみ対応している。
このインターフェースにより、ドメインの専門家は表データでNCDのための最先端のアルゴリズムを簡単に実行することができる。
- 参考スコア(独自算出の注目度): 54.11148718494725
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Novel Class Discovery (NCD) is the problem of trying to discover novel
classes in an unlabeled set, given a labeled set of different but related
classes. The majority of NCD methods proposed so far only deal with image data,
despite tabular data being among the most widely used type of data in practical
applications. To interpret the results of clustering or NCD algorithms, data
scientists need to understand the domain- and application-specific attributes
of tabular data. This task is difficult and can often only be performed by a
domain expert. Therefore, this interface allows a domain expert to easily run
state-of-the-art algorithms for NCD in tabular data. With minimal knowledge in
data science, interpretable results can be generated.
- Abstract(参考訳): 新規クラス発見(英語: novel class discovery、ncd)とは、ラベルのない集合の中で新しいクラスを見つけようとする問題である。
提案されているncd手法の大部分は画像データのみを扱うものであるが、表型データは実用的な用途において最も広く使われているデータである。
クラスタリングやNCDアルゴリズムの結果を解釈するには、データサイエンティストが表データのドメインやアプリケーション固有の属性を理解する必要がある。
このタスクは困難であり、しばしばドメインエキスパートによってのみ実行される。
したがって、このインターフェースにより、ドメインエキスパートは、表データでncdの最先端のアルゴリズムを簡単に実行できます。
データサイエンスの知識が最小限であれば、解釈可能な結果が生成される。
関連論文リスト
- Exclusive Style Removal for Cross Domain Novel Class Discovery [15.868889486516306]
新たなクラスディスカバリ(NCD)は,オープンワールド学習において有望な分野である。
本稿では,基本特徴と異なるスタイル情報を抽出するための排他的スタイル除去モジュールを提案する。
このモジュールは他のNCDメソッドと簡単に統合でき、異なるディストリビューションを持つ新しいクラスのパフォーマンスを向上させるプラグインとして機能する。
論文 参考訳(メタデータ) (2024-06-26T07:44:27Z) - A Practical Approach to Novel Class Discovery in Tabular Data [38.41548083078336]
新規クラスディスカバリー(英: Novel Class Discovery, NCD)は、未知のクラスを正確に分割するために、ラベル付けされた既知のクラスの集合から知識を抽出する問題である。
本研究では、$k$-foldのクロスバリデーションプロセスを適用し、既知のクラスの一部を各フォルダに隠すことで、NCDメソッドのハイパーパラメータを調整することを提案する。
この手法の潜在空間は,新規クラスの数を確実に推定するために有効であることがわかった。
論文 参考訳(メタデータ) (2023-11-09T15:24:44Z) - Dynamic Conceptional Contrastive Learning for Generalized Category
Discovery [76.82327473338734]
Generalized category discovery (GCD) は、部分的にラベル付けされたデータを自動でクラスタリングすることを目的としている。
ラベル付きデータには、ラベル付きデータの既知のカテゴリだけでなく、新しいカテゴリのインスタンスも含まれている。
GCDの効果的な方法の1つは、ラベルなしデータの識別表現を学習するために自己教師付き学習を適用することである。
本稿では,クラスタリングの精度を効果的に向上する動的概念コントラスト学習フレームワークを提案する。
論文 参考訳(メタデータ) (2023-03-30T14:04:39Z) - D\'ecouvrir de nouvelles classes dans des donn\'ees tabulaires [54.11148718494725]
Novel Class Discovery (NCD) において、ゴールは、既知のクラスと異なるクラスのラベル付きセットが与えられたラベルのないセットで新しいクラスを見つけることである。
異種データにおける新しいクラスの発見過程を導くために,すでに知られているクラスから知識を抽出する方法を示す。
論文 参考訳(メタデータ) (2022-11-28T09:48:55Z) - A Method for Discovering Novel Classes in Tabular Data [54.11148718494725]
Novel Class Discovery (NCD) において、ゴールは、既知のクラスと異なるクラスのラベル付きセットが与えられたラベルのないセットで新しいクラスを見つけることである。
異種データにおける新しいクラスの発見過程を導くために,すでに知られているクラスから知識を抽出する方法を示す。
論文 参考訳(メタデータ) (2022-09-02T11:45:24Z) - XCon: Learning with Experts for Fine-grained Category Discovery [4.787507865427207]
本稿では,XCon(Expert-Contrastive Learning)と呼ばれる新しい手法を提案する。
細粒度データセットを用いた実験では,従来の最適手法よりも明らかに改善された性能を示し,本手法の有効性を示した。
論文 参考訳(メタデータ) (2022-08-03T08:03:12Z) - Spacing Loss for Discovering Novel Categories [72.52222295216062]
新たなクラスディスカバリ(NCD)は、マシンラーニングモデルがラベルのないデータからインスタンスを意味的にグループ化する、学習パラダイムである。
まず,ラベル付きデータとラベルなしデータを併用する必要があるかどうかに基づいて,既存のNCD手法を1段階および2段階の手法に特徴付ける。
多次元スケーリングのキューを用いて、潜在空間における分離性を強制する単純で強力な損失関数を考案する。
論文 参考訳(メタデータ) (2022-04-22T09:37:11Z) - CvS: Classification via Segmentation For Small Datasets [52.821178654631254]
本稿では,分類ラベルをセグメントマップの予測から導出する小型データセットのコスト効率の高い分類器であるCvSを提案する。
我々は,CvSが従来の手法よりもはるかに高い分類結果が得られることを示す多種多様な問題に対して,本フレームワークの有効性を評価する。
論文 参考訳(メタデータ) (2021-10-29T18:41:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。