論文の概要: Robust Semantic Segmentation: Strong Adversarial Attacks and Fast
Training of Robust Models
- arxiv url: http://arxiv.org/abs/2306.12941v1
- Date: Thu, 22 Jun 2023 14:56:06 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-23 14:18:43.076555
- Title: Robust Semantic Segmentation: Strong Adversarial Attacks and Fast
Training of Robust Models
- Title(参考訳): ロバストセマンティックセマンティックセグメンテーション:強敵攻撃とロバストモデルの高速訓練
- Authors: Francesco Croce, Naman D Singh, Matthias Hein
- Abstract要約: 攻撃セグメンテーションモデルがタスク固有の課題を示し、新しい解決策を提案する。
我々の最終評価プロトコルは既存の手法よりも優れており、モデルの頑健さを過大評価できることを示す。
- 参考スコア(独自算出の注目度): 55.19586522442065
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: While a large amount of work has focused on designing adversarial attacks
against image classifiers, only a few methods exist to attack semantic
segmentation models. We show that attacking segmentation models presents
task-specific challenges, for which we propose novel solutions. Our final
evaluation protocol outperforms existing methods, and shows that those can
overestimate the robustness of the models. Additionally, so far adversarial
training, the most successful way for obtaining robust image classifiers, could
not be successfully applied to semantic segmentation. We argue that this is
because the task to be learned is more challenging, and requires significantly
higher computational effort than for image classification. As a remedy, we show
that by taking advantage of recent advances in robust ImageNet classifiers, one
can train adversarially robust segmentation models at limited computational
cost by fine-tuning robust backbones.
- Abstract(参考訳): 画像分類器に対する敵攻撃の設計に多くの研究が注がれているが、セマンティックセグメンテーションモデルを攻撃する手法はごくわずかである。
セグメンテーションモデルへの攻撃はタスク固有の課題であり,新しい解決策を提案する。
最終評価プロトコルは既存手法よりも優れており,モデルのロバスト性を過大評価できることを示す。
さらに,より堅牢な画像分類器を得る上で最も成功した逆行訓練は,セマンティックセグメンテーションにうまく適用できなかった。
これは、学習すべき課題がより困難であり、画像分類よりもはるかに高い計算労力を必要とするためである。
本稿では,画像ネット分類器の最近の進歩を生かして,頑健なバックボーンを微調整することで,計算コストの制限により,逆向きに頑健なセグメンテーションモデルを訓練できることを示す。
関連論文リスト
- MOREL: Enhancing Adversarial Robustness through Multi-Objective Representation Learning [1.534667887016089]
ディープニューラルネットワーク(DNN)は、わずかに敵対的な摂動に対して脆弱である。
トレーニング中の強力な特徴表現学習は、元のモデルの堅牢性を大幅に向上させることができることを示す。
本稿では,多目的特徴表現学習手法であるMORELを提案する。
論文 参考訳(メタデータ) (2024-10-02T16:05:03Z) - Learning to Generate Training Datasets for Robust Semantic Segmentation [37.9308918593436]
セマンティックセグメンテーション手法の堅牢性を改善するための新しい手法を提案する。
我々は,現実的で可視な摂動画像を生成するために,新しい条件付き生成対向ネットワークであるRobustaを設計した。
我々の結果は、このアプローチが安全クリティカルなアプリケーションに有用である可能性を示唆している。
論文 参考訳(メタデータ) (2023-08-01T10:02:26Z) - On Evaluating the Adversarial Robustness of Semantic Segmentation Models [0.0]
敵の摂動に対する防御手段として、多くの敵の訓練アプローチが提案されている。
私たちは、前回の作業で堅牢であると主張するモデルが、実際にはまったく堅牢ではないことを初めて示しています。
次に, 強攻撃群においても, 合理的に堅牢なモデルを生成する, 単純な対向訓練アルゴリズムを評価する。
論文 参考訳(メタデータ) (2023-06-25T11:45:08Z) - SegPGD: An Effective and Efficient Adversarial Attack for Evaluating and
Boosting Segmentation Robustness [63.726895965125145]
ディープニューラルネットワークに基づく画像分類は、敵の摂動に弱い。
本研究では,SegPGDと呼ばれる効果的かつ効率的なセグメンテーション攻撃手法を提案する。
SegPGDはより効果的な敵の例を生成することができるため、SegPGDを用いた敵の訓練はセグメントモデルの堅牢性を高めることができる。
論文 参考訳(メタデータ) (2022-07-25T17:56:54Z) - Firearm Detection via Convolutional Neural Networks: Comparing a
Semantic Segmentation Model Against End-to-End Solutions [68.8204255655161]
武器の脅威検出とライブビデオからの攻撃的な行動は、潜在的に致命的な事故の迅速検出と予防に使用できる。
これを実現する一つの方法は、人工知能と、特に画像分析のための機械学習を使用することです。
従来のモノリシックなエンド・ツー・エンドのディープラーニングモデルと、セマンティクスセグメンテーションによって火花を検知する単純なニューラルネットワークのアンサンブルに基づく前述したモデルを比較した。
論文 参考訳(メタデータ) (2020-12-17T15:19:29Z) - Group-Wise Semantic Mining for Weakly Supervised Semantic Segmentation [49.90178055521207]
この研究は、画像レベルのアノテーションとピクセルレベルのセグメンテーションのギャップを埋めることを目標に、弱い監督されたセマンティックセグメンテーション(WSSS)に対処する。
画像群における意味的依存関係を明示的にモデル化し,より信頼性の高い擬似的基盤構造を推定する,新たなグループ学習タスクとしてWSSSを定式化する。
特に、入力画像がグラフノードとして表現されるグループ単位のセマンティックマイニングのためのグラフニューラルネットワーク(GNN)を考案する。
論文 参考訳(メタデータ) (2020-12-09T12:40:13Z) - Overcoming Classifier Imbalance for Long-tail Object Detection with
Balanced Group Softmax [88.11979569564427]
本報告では, 長期分布前における最先端モデルの過小評価に関する最初の体系的解析を行う。
本稿では,グループワイドトレーニングを通じて検出フレームワーク内の分類器のバランスをとるための,新しいバランス付きグループソフトマックス(BAGS)モジュールを提案する。
非常に最近の長尾大語彙オブジェクト認識ベンチマークLVISの大規模な実験により,提案したBAGSは検出器の性能を著しく向上することが示された。
論文 参考訳(メタデータ) (2020-06-18T10:24:26Z) - Learning Fast and Robust Target Models for Video Object Segmentation [83.3382606349118]
ビデオオブジェクトセグメンテーション(VOS)は、ターゲットオブジェクトを定義する初期マスクがテスト時にのみ与えられるため、非常に難しい問題である。
それまでのほとんどの場合、第1フレーム上のファイン・チューン・セグメンテーション・ネットワークにアプローチし、非現実的なフレームレートとオーバーフィッティングのリスクをもたらす。
本稿では,2つのネットワークコンポーネントからなる新しいVOSアーキテクチャを提案する。
論文 参考訳(メタデータ) (2020-02-27T21:58:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。