論文の概要: Mutually Guided Few-shot Learning for Relational Triple Extraction
- arxiv url: http://arxiv.org/abs/2306.13310v1
- Date: Fri, 23 Jun 2023 06:15:54 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-26 13:36:58.828394
- Title: Mutually Guided Few-shot Learning for Relational Triple Extraction
- Title(参考訳): リレーショナルトリプル抽出のための相互指導型ファウショット学習
- Authors: Chengmei Yang, Shuai Jiang, Bowei He, Chen Ma, and Lianghua He
- Abstract要約: 三重抽出(MG-FTE)のための相互指導型Few-shot学習フレームワーク
本手法は,関係を分類するエンティティ誘導型リレーショナルデコーダと,エンティティを抽出するプロトデコーダとから構成される。
FewRel 1.0(単一ドメイン)では12.6F1スコア、FewRel 2.0(クロスドメイン)では20.5F1スコアで、多くの最先端手法よりも優れています。
- 参考スコア(独自算出の注目度): 10.539566491939844
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Knowledge graphs (KGs), containing many entity-relation-entity triples,
provide rich information for downstream applications. Although extracting
triples from unstructured texts has been widely explored, most of them require
a large number of labeled instances. The performance will drop dramatically
when only few labeled data are available. To tackle this problem, we propose
the Mutually Guided Few-shot learning framework for Relational Triple
Extraction (MG-FTE). Specifically, our method consists of an entity-guided
relation proto-decoder to classify the relations firstly and a relation-guided
entity proto-decoder to extract entities based on the classified relations. To
draw the connection between entity and relation, we design a proto-level fusion
module to boost the performance of both entity extraction and relation
classification. Moreover, a new cross-domain few-shot triple extraction task is
introduced. Extensive experiments show that our method outperforms many
state-of-the-art methods by 12.6 F1 score on FewRel 1.0 (single-domain) and
20.5 F1 score on FewRel 2.0 (cross-domain).
- Abstract(参考訳): 多くのエンティティ関連性トリプルを含む知識グラフ(KG)は、下流アプリケーションに豊富な情報を提供する。
構造化されていないテキストからトリプルを抽出することは広く研究されているが、そのほとんどは多数のラベル付きインスタンスを必要とする。
ラベル付きデータが少ないと、パフォーマンスは劇的に低下します。
この問題に対処するため,Mutually Guided Few-shot Learning framework for Relational Triple extract (MG-FTE)を提案する。
具体的には、まず関係を分類するエンティティ誘導関係プロトデコーダと、その分類関係に基づいてエンティティを抽出する関係誘導関係プロトデコーダとからなる。
本稿では,エンティティ抽出と関係分類の両方の性能を高めるために,エンティティと関係の接続を図り,プロトレベルの融合モジュールを設計する。
さらに、新しいクロスドメインの複数ショットトリプル抽出タスクを導入する。
FewRel 1.0(単一ドメイン)では12.6F1、FewRel 2.0(クロスドメイン)では20.5F1のスコアで多くの最先端手法よりも優れていた。
関連論文リスト
- PEneo: Unifying Line Extraction, Line Grouping, and Entity Linking for
End-to-end Document Pair Extraction [29.620120164447737]
ドキュメントペア抽出は、キーエンティティとバリューエンティティの識別と、視覚的に豊富なドキュメントからの関連性の実現を目的としている。
既存のほとんどのメソッドは、セマンティックエンティティ認識(SER)と関係抽出(RE)の2つのタスクに分割している。
本稿では,ライン抽出,ライングルーピング,エンティティリンクという3つの並列サブタスクを組み込んだ,統一パイプラインで文書ペア抽出を行うPEneoについて紹介する。
論文 参考訳(メタデータ) (2024-01-07T12:48:07Z) - HIORE: Leveraging High-order Interactions for Unified Entity Relation
Extraction [85.80317530027212]
本稿では,統合エンティティ関係抽出のための新しい手法であるHIOREを提案する。
重要な洞察は、単語ペア間の複雑な関連を活用することである。
実験の結果,HIOREは従来最高の統一モデルよりも1.11.8 F1ポイント向上した。
論文 参考訳(メタデータ) (2023-05-07T14:57:42Z) - ReSel: N-ary Relation Extraction from Scientific Text and Tables by
Learning to Retrieve and Select [53.071352033539526]
学術論文からN-ary関係を抽出する問題について考察する。
提案手法であるReSelは,このタスクを2段階のプロシージャに分解する。
3つの科学的情報抽出データセットに対する実験により、ReSelは最先端のベースラインを大きく上回っていることがわかった。
論文 参考訳(メタデータ) (2022-10-26T02:28:02Z) - A sequence-to-sequence approach for document-level relation extraction [4.906513405712846]
文書レベルの関係抽出(DocRE)は、文内および文間の情報の統合を必要とする。
Seq2relはDocREのエンドツーエンドのサブタスクを学習し、タスク固有のコンポーネントのパイプラインを置き換える。
論文 参考訳(メタデータ) (2022-04-03T16:03:19Z) - Learning Relation-Specific Representations for Few-shot Knowledge Graph
Completion [24.880078645503417]
本稿では,三重項のグラフコンテキストを利用して関係と実体のセマンティック情報を同時に取得する関係特化文脈学習フレームワークを提案する。
2つの公開データセットの実験結果は、RSCLが最先端のFKGC法より優れていることを示している。
論文 参考訳(メタデータ) (2022-03-22T11:45:48Z) - RelationPrompt: Leveraging Prompts to Generate Synthetic Data for
Zero-Shot Relation Triplet Extraction [65.4337085607711]
ゼロショット関係トリプルト抽出(ZeroRTE)のタスク設定について紹介する。
入力文が与えられた後、抽出された各三重項は、トレーニング段階で関係ラベルが見えないヘッドエンティティ、リレーションラベル、テールエンティティから構成される。
本稿では、言語モデルに構造化テキストを生成するよう促すことで、関係例を合成する。
論文 参考訳(メタデータ) (2022-03-17T05:55:14Z) - OneRel:Joint Entity and Relation Extraction with One Module in One Step [42.576188878294886]
統合エンティティと関係抽出は自然言語処理と知識グラフ構築において不可欠な課題である。
そこで我々は, 結合抽出を細粒度三重分類問題として用いた, OneRel という新しい結合実体と関係抽出モデルを提案する。
論文 参考訳(メタデータ) (2022-03-10T15:09:59Z) - Pack Together: Entity and Relation Extraction with Levitated Marker [61.232174424421025]
エンコーダにマーカを戦略的にパッケージ化することにより,スパン(ペア)間の依存関係を検討するために,Packed Levitated Markersという新しいスパン表現手法を提案する。
実験の結果,3つの平坦なNERタスクにおいて,有望なマーカーが充填されたモデルの方がシーケンスラベルモデルよりも0.4%-1.9%優れ,トークンコンキャットモデルを6つのNERベンチマークで上回っていることがわかった。
論文 参考訳(メタデータ) (2021-09-13T15:38:13Z) - Eider: Evidence-enhanced Document-level Relation Extraction [56.71004595444816]
文書レベルの関係抽出(DocRE)は、文書内のエンティティペア間の意味関係を抽出することを目的としている。
本稿では,共同関係と証拠抽出,エビデンス中心関係抽出(RE),抽出結果の融合からなる3段階のエビデンス強化DocREフレームワークを提案する。
論文 参考訳(メタデータ) (2021-06-16T09:43:16Z) - Learning Relation Prototype from Unlabeled Texts for Long-tail Relation
Extraction [84.64435075778988]
本稿では,ラベルのないテキストから関係プロトタイプを学習するための一般的なアプローチを提案する。
我々は、エンティティ間の暗黙的な要因として関係プロトタイプを学習する。
私たちは、New York TimesとGoogle Distant Supervisionの2つの公開データセットで実験を行います。
論文 参考訳(メタデータ) (2020-11-27T06:21:12Z) - Bridging Text and Knowledge with Multi-Prototype Embedding for Few-Shot
Relational Triple Extraction [40.00702385889112]
本稿では,関係三重項の合成を共同で抽出する,新しいマルチプロトタイプ埋め込みネットワークモデルを提案する。
我々は、エンティティとリレーションの両方に関するテキストと知識を橋渡しするハイブリッド学習機構を設計する。
実験により, 提案手法は, 数発トリプル抽出の性能を向上させることができることを示した。
論文 参考訳(メタデータ) (2020-10-30T04:18:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。