論文の概要: Toward A Logical Theory Of Fairness and Bias
- arxiv url: http://arxiv.org/abs/2306.13659v1
- Date: Thu, 8 Jun 2023 09:18:28 GMT
- ステータス: 処理完了
- システム内更新日: 2023-07-02 13:44:45.730536
- Title: Toward A Logical Theory Of Fairness and Bias
- Title(参考訳): 公正とバイアスの論理理論に向けて
- Authors: Vaishak Belle
- Abstract要約: 公正定義の形式的な再構築を主張する。
我々は、無意識による公平さ、人口的平等、そして反事実公正という3つの概念を考察する。
- 参考スコア(独自算出の注目度): 12.47276164048813
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Fairness in machine learning is of considerable interest in recent years
owing to the propensity of algorithms trained on historical data to amplify and
perpetuate historical biases. In this paper, we argue for a formal
reconstruction of fairness definitions, not so much to replace existing
definitions but to ground their application in an epistemic setting and allow
for rich environmental modelling. Consequently we look into three notions:
fairness through unawareness, demographic parity and counterfactual fairness,
and formalise these in the epistemic situation calculus.
- Abstract(参考訳): 近年、機械学習の公平性は、履歴データに基づいて訓練されたアルゴリズムが、歴史的バイアスを増幅し持続するため、かなりの関心を集めている。
本稿では,フェアネス定義の形式的再構成を議論する。既存の定義を置き換えるのではなく,その応用を認識論的に定め,豊かな環境モデリングを可能にする。
その結果, 公平性, 不認識, 人口格差, 反事実公平性の3つの概念を考察し, 疫学的な状況計算でこれらを定式化する。
関連論文リスト
- Fairness-Accuracy Trade-Offs: A Causal Perspective [58.06306331390586]
我々は、初めて因果レンズから公正性と正確性の間の張力を分析する。
因果的制約を強制することは、しばしば人口集団間の格差を減少させることを示す。
因果制約付きフェアラーニングのための新しいニューラルアプローチを導入する。
論文 参考訳(メタデータ) (2024-05-24T11:19:52Z) - What Hides behind Unfairness? Exploring Dynamics Fairness in Reinforcement Learning [52.51430732904994]
強化学習問題では、エージェントはリターンを最大化しながら長期的な公正性を考慮する必要がある。
近年の研究では様々なフェアネスの概念が提案されているが、RL問題における不公平性がどのように生じるかは定かではない。
我々は、環境力学から生じる不平等を明示的に捉える、ダイナミックスフェアネスという新しい概念を導入する。
論文 参考訳(メタデータ) (2024-04-16T22:47:59Z) - Fairness Explainability using Optimal Transport with Applications in
Image Classification [0.46040036610482665]
機械学習アプリケーションにおける差別の原因を明らかにするための包括的アプローチを提案する。
We leverage Wasserstein barycenters to achieve fair predictions and introduce an extension to pinpoint bias-associated region。
これにより、各特徴がバイアスに影響を及ぼすかどうかを測定するために強制的公正性を使用する凝集系を導出することができる。
論文 参考訳(メタデータ) (2023-08-22T00:10:23Z) - Learning for Counterfactual Fairness from Observational Data [62.43249746968616]
公正な機械学習は、人種、性別、年齢などの特定の保護された(感受性のある)属性によって記述されるある種のサブグループに対して、学習モデルのバイアスを取り除くことを目的としている。
カウンターファクトフェアネスを達成するための既存の手法の前提条件は、データに対する因果モデルの事前の人間の知識である。
本研究では,新しいフレームワークCLAIREを提案することにより,因果関係を付与せずに観測データから対実的に公正な予測を行う問題に対処する。
論文 参考訳(メタデータ) (2023-07-17T04:08:29Z) - Fair Enough: Standardizing Evaluation and Model Selection for Fairness
Research in NLP [64.45845091719002]
現代のNLPシステムは様々なバイアスを示しており、モデル偏見に関する文献が増えている。
本稿では,その現状を解明し,公正学習における意味ある進歩の道筋を立案することを目的とする。
論文 参考訳(メタデータ) (2023-02-11T14:54:00Z) - Fairness and Randomness in Machine Learning: Statistical Independence
and Relativization [10.482805367361818]
我々は、機械学習で日常的に使われている公平性とランダム性の概念における統計的独立性の役割を識別する。
我々は、ランダム性と公正性は、機械学習におけるモデリング仮定として、その性質を反映すべきであると主張している。
論文 参考訳(メタデータ) (2022-07-27T15:55:05Z) - Counterfactual Fairness with Partially Known Causal Graph [85.15766086381352]
本稿では,真の因果グラフが不明な場合に,対実フェアネスの概念を実現するための一般的な手法を提案する。
特定の背景知識が提供されると、正の因果グラフが完全に知られているかのように、反ファクト的公正性を達成することができる。
論文 参考訳(メタデータ) (2022-05-27T13:40:50Z) - Fairness in Machine Learning [15.934879442202785]
因果ベイズネットワークが,公平を理屈し対処するための重要な役割を果たすことを示す。
異なる設定や公平性基準に対処できる手法を含む統一されたフレームワークを提案する。
論文 参考訳(メタデータ) (2020-12-31T18:38:58Z) - Fairness in Semi-supervised Learning: Unlabeled Data Help to Reduce
Discrimination [53.3082498402884]
機械学習の台頭における投機は、機械学習モデルによる決定が公正かどうかである。
本稿では,未ラベルデータのラベルを予測するための擬似ラベリングを含む,前処理フェーズにおける公平な半教師付き学習の枠組みを提案する。
偏見、分散、ノイズの理論的分解分析は、半教師付き学習における差別の異なる源とそれらが公平性に与える影響を浮き彫りにする。
論文 参考訳(メタデータ) (2020-09-25T05:48:56Z) - The Impossibility Theorem of Machine Fairness -- A Causal Perspective [0.15229257192293202]
コミュニティで使用されるマシンフェアネスの目立った指標は3つある。
それら全てを同時に満たすことは不可能であることが統計的に示されている。
論文 参考訳(メタデータ) (2020-07-12T15:56:15Z) - Statistical Equity: A Fairness Classification Objective [6.174903055136084]
エクイティの原則によって動機付けられた新しい公平性の定義を提案する。
フェアネスの定義を形式化し、適切な文脈でモチベーションを与えます。
我々は、定義の有効性を示すために、複数の自動評価と人的評価を行う。
論文 参考訳(メタデータ) (2020-05-14T23:19:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。