Phase Unwrapping of Color Doppler Echocardiography using Deep Learning
- URL: http://arxiv.org/abs/2306.13695v2
- Date: Wed, 5 Jul 2023 17:03:43 GMT
- Title: Phase Unwrapping of Color Doppler Echocardiography using Deep Learning
- Authors: Hang Jung Ling, Olivier Bernard, Nicolas Ducros, Damien Garcia
- Abstract summary: We develop an unfolded primal-dual network to unwrap (dealias) color Doppler echocardiographic images.
We compare its effectiveness against two state-of-the-art segmentation approaches based on nnU-Net and transformer models.
Our results suggest that deep learning-based methods can effectively remove aliasing artifacts in color Doppler echocardiographic images.
- Score: 1.3534683694551501
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Color Doppler echocardiography is a widely used non-invasive imaging modality
that provides real-time information about the intracardiac blood flow. In an
apical long-axis view of the left ventricle, color Doppler is subject to phase
wrapping, or aliasing, especially during cardiac filling and ejection. When
setting up quantitative methods based on color Doppler, it is necessary to
correct this wrapping artifact. We developed an unfolded primal-dual network to
unwrap (dealias) color Doppler echocardiographic images and compared its
effectiveness against two state-of-the-art segmentation approaches based on
nnU-Net and transformer models. We trained and evaluated the performance of
each method on an in-house dataset and found that the nnU-Net-based method
provided the best dealiased results, followed by the primal-dual approach and
the transformer-based technique. Noteworthy, the primal-dual network, which had
significantly fewer trainable parameters, performed competitively with respect
to the other two methods, demonstrating the high potential of deep unfolding
methods. Our results suggest that deep learning-based methods can effectively
remove aliasing artifacts in color Doppler echocardiographic images,
outperforming DeAN, a state-of-the-art semi-automatic technique. Overall, our
results show that deep learning-based methods have the potential to effectively
preprocess color Doppler images for downstream quantitative analysis.
Related papers
- The Efficacy of Semantics-Preserving Transformations in Self-Supervised Learning for Medical Ultrasound [60.80780313225093]
This study systematically investigated the impact of data augmentation and preprocessing strategies in self-supervised learning for lung ultrasound.
Three data augmentation pipelines were assessed: a baseline pipeline commonly used across imaging domains, a novel semantic-preserving pipeline designed for ultrasound, and a distilled set of the most effective transformations from both pipelines.
arXiv Detail & Related papers (2025-04-10T16:26:47Z) - DiffDoctor: Diagnosing Image Diffusion Models Before Treating [57.82359018425674]
We propose DiffDoctor, a two-stage pipeline to assist image diffusion models in generating fewer artifacts.
We collect a dataset of over 1M flawed synthesized images and set up an efficient human-in-the-loop annotation process.
The learned artifact detector is then involved in the second stage to optimize the diffusion model by providing pixel-level feedback.
arXiv Detail & Related papers (2025-01-21T18:56:41Z) - Explicit Differentiable Slicing and Global Deformation for Cardiac Mesh Reconstruction [8.730291904586656]
Mesh reconstruction of the cardiac anatomy from medical images is useful for shape and motion measurements and biophysics simulations.
Traditional voxel-based approaches rely on pre- and post-processing that compromises image fidelity.
We propose a novel explicit differentiable voxelization and slicing (DVS) algorithm that allows gradient backpropagation to a mesh from its slices.
arXiv Detail & Related papers (2024-09-03T17:19:31Z) - Deep Learning Based Speckle Filtering for Polarimetric SAR Images. Application to Sentinel-1 [51.404644401997736]
We propose a complete framework to remove speckle in polarimetric SAR images using a convolutional neural network.
Experiments show that the proposed approach offers exceptional results in both speckle reduction and resolution preservation.
arXiv Detail & Related papers (2024-08-28T10:07:17Z) - Intra-video Positive Pairs in Self-Supervised Learning for Ultrasound [65.23740556896654]
Self-supervised learning (SSL) is one strategy for addressing the paucity of labelled data in medical imaging.
In this study, we investigated the effect of utilizing proximal, distinct images from the same B-mode ultrasound video as pairs for SSL.
Named Intra-Video Positive Pairs (IVPP), the method surpassed previous ultrasound-specific contrastive learning methods' average test accuracy on COVID-19 classification.
arXiv Detail & Related papers (2024-03-12T14:57:57Z) - Deep learning network to correct axial and coronal eye motion in 3D OCT
retinal imaging [65.47834983591957]
We propose deep learning based neural networks to correct axial and coronal motion artifacts in OCT based on a single scan.
The experimental result shows that the proposed method can effectively correct motion artifacts and achieve smaller error than other methods.
arXiv Detail & Related papers (2023-05-27T03:55:19Z) - DopUS-Net: Quality-Aware Robotic Ultrasound Imaging based on Doppler
Signal [48.97719097435527]
DopUS-Net combines the Doppler images with B-mode images to increase the segmentation accuracy and robustness of small blood vessels.
An artery re-identification module qualitatively evaluate the real-time segmentation results and automatically optimize the probe pose for enhanced Doppler images.
arXiv Detail & Related papers (2023-05-15T18:19:29Z) - Stain-invariant self supervised learning for histopathology image
analysis [74.98663573628743]
We present a self-supervised algorithm for several classification tasks within hematoxylin and eosin stained images of breast cancer.
Our method achieves the state-of-the-art performance on several publicly available breast cancer datasets.
arXiv Detail & Related papers (2022-11-14T18:16:36Z) - Compressive Ptychography using Deep Image and Generative Priors [9.658250977094562]
Ptychography is a well-established coherent diffraction imaging technique that enables non-invasive imaging of samples at a nanometer scale.
One major limitation of ptychography is the long data acquisition time due to mechanical scanning of the sample.
We propose a generative model combining deep image priors with deep generative priors.
arXiv Detail & Related papers (2022-05-05T02:18:26Z) - Harmonizing Pathological and Normal Pixels for Pseudo-healthy Synthesis [68.5287824124996]
We present a new type of discriminator, the segmentor, to accurately locate the lesions and improve the visual quality of pseudo-healthy images.
We apply the generated images into medical image enhancement and utilize the enhanced results to cope with the low contrast problem.
Comprehensive experiments on the T2 modality of BraTS demonstrate that the proposed method substantially outperforms the state-of-the-art methods.
arXiv Detail & Related papers (2022-03-29T08:41:17Z) - Deep Learning Adapted Acceleration for Limited-view Photoacoustic
Computed Tomography [1.8830359888767887]
Photoacoustic computed tomography (PACT) uses unfocused large-area light to illuminate the target with ultrasound transducer array for PA signal detection.
Limited-view issue could cause a low-quality image in PACT due to the limitation of geometric condition.
A model-based method that combines the mathematical variational model with deep learning is proposed to speed up and regularize the unrolled procedure of reconstruction.
arXiv Detail & Related papers (2021-11-08T02:05:58Z) - Prediction of low-keV monochromatic images from polyenergetic CT scans
for improved automatic detection of pulmonary embolism [21.47219330040151]
We are training convolutional neural networks that can emulate the generation of monoE images from conventional single energy CT acquisitions.
We expand on these methods through the use of a multi-task optimization approach, under which the networks achieve improved classification as well as generation results.
arXiv Detail & Related papers (2021-02-02T11:42:31Z) - Self-supervised Dynamic CT Perfusion Image Denoising with Deep Neural
Networks [6.167259271197635]
Dynamic computed tomography (CTP) imaging is a promising approach for acute ischemic stroke diagnosis and evaluation.
Hemodynamic parametric maps of cerebral parenchyma are calculated from repeated CT scans of the first pass of iodinated contrast through the brain.
It is necessary to reduce the dose of perfusion for routine applications due to the high radiation exposure from the repeated scans, where image denoising is necessary to achieve a reliable diagnosis.
arXiv Detail & Related papers (2020-05-19T21:44:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.