Unleashing the Potential of SAM for Medical Adaptation via Hierarchical Decoding
- URL: http://arxiv.org/abs/2403.18271v1
- Date: Wed, 27 Mar 2024 05:55:16 GMT
- Title: Unleashing the Potential of SAM for Medical Adaptation via Hierarchical Decoding
- Authors: Zhiheng Cheng, Qingyue Wei, Hongru Zhu, Yan Wang, Liangqiong Qu, Wei Shao, Yuyin Zhou,
- Abstract summary: This paper introduces H-SAM, a prompt-free adaptation of the Segment Anything Model (SAM) for efficient fine-tuning of medical images.
In the initial stage, H-SAM employs SAM's original decoder to generate a prior probabilistic mask, guiding a more intricate decoding process.
Our H-SAM demonstrates a 4.78% improvement in average Dice compared to existing prompt-free SAM variants.
- Score: 15.401507589312702
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: The Segment Anything Model (SAM) has garnered significant attention for its versatile segmentation abilities and intuitive prompt-based interface. However, its application in medical imaging presents challenges, requiring either substantial training costs and extensive medical datasets for full model fine-tuning or high-quality prompts for optimal performance. This paper introduces H-SAM: a prompt-free adaptation of SAM tailored for efficient fine-tuning of medical images via a two-stage hierarchical decoding procedure. In the initial stage, H-SAM employs SAM's original decoder to generate a prior probabilistic mask, guiding a more intricate decoding process in the second stage. Specifically, we propose two key designs: 1) A class-balanced, mask-guided self-attention mechanism addressing the unbalanced label distribution, enhancing image embedding; 2) A learnable mask cross-attention mechanism spatially modulating the interplay among different image regions based on the prior mask. Moreover, the inclusion of a hierarchical pixel decoder in H-SAM enhances its proficiency in capturing fine-grained and localized details. This approach enables SAM to effectively integrate learned medical priors, facilitating enhanced adaptation for medical image segmentation with limited samples. Our H-SAM demonstrates a 4.78% improvement in average Dice compared to existing prompt-free SAM variants for multi-organ segmentation using only 10% of 2D slices. Notably, without using any unlabeled data, H-SAM even outperforms state-of-the-art semi-supervised models relying on extensive unlabeled training data across various medical datasets. Our code is available at https://github.com/Cccccczh404/H-SAM.
Related papers
- DB-SAM: Delving into High Quality Universal Medical Image Segmentation [100.63434169944853]
We propose a dual-branch adapted SAM framework, named DB-SAM, to bridge the gap between natural and 2D/3D medical data.
Our proposed DB-SAM achieves an absolute gain of 8.8%, compared to a recent medical SAM adapter in the literature.
arXiv Detail & Related papers (2024-10-05T14:36:43Z) - Swin-LiteMedSAM: A Lightweight Box-Based Segment Anything Model for Large-Scale Medical Image Datasets [0.6827423171182151]
We introduce Swin-LiteMedSAM, a new variant of LiteMedSAM.
This model integrates the tiny Swin Transformer as the image encoder, incorporates multiple types of prompts, and establishes skip connections between the image encoder and the mask decoder.
In the textitSegment Anything in Medical Images on Laptop challenge (CVPR 2024), our approach strikes a good balance between segmentation performance and speed.
arXiv Detail & Related papers (2024-09-11T10:35:42Z) - ESP-MedSAM: Efficient Self-Prompting SAM for Universal Domain-Generalized Medical Image Segmentation [18.388979166848962]
Segment Anything Model (SAM) has demonstrated its potential in both settings.
We propose an efficient self-prompting SAM for universal domain-generalized medical image segmentation, named ESP-MedSAM.
ESP-MedSAM outperforms state-of-the-arts in diverse medical imaging segmentation tasks.
arXiv Detail & Related papers (2024-07-19T09:32:30Z) - MAS-SAM: Segment Any Marine Animal with Aggregated Features [55.91291540810978]
We propose a novel feature learning framework named MAS-SAM for marine animal segmentation.
Our method enables to extract richer marine information from global contextual cues to fine-grained local details.
arXiv Detail & Related papers (2024-04-24T07:38:14Z) - MaskSAM: Towards Auto-prompt SAM with Mask Classification for Medical Image Segmentation [18.125292369318576]
MaskSAM is a mask classification prompt-free adaptation framework for medical image segmentation.
Our method achieves state-of-the-art performance on AMOS2022, 90.52% Dice, which improved by 2.7% compared to nnUNet.
arXiv Detail & Related papers (2024-03-21T03:28:24Z) - WSI-SAM: Multi-resolution Segment Anything Model (SAM) for histopathology whole-slide images [8.179859593451285]
We present WSI-SAM, enhancing Segment Anything Model (SAM) with precise object segmentation capabilities for histopathology images.
To fully exploit pretrained knowledge while minimizing training overhead, we keep SAM frozen, introducing only minimal extra parameters.
Our model outperforms SAM by 4.1 and 2.5 percent points on a ductal carcinoma in situ (DCIS) segmentation tasks and breast cancer metastasis segmentation task.
arXiv Detail & Related papers (2024-03-14T10:30:43Z) - MA-SAM: Modality-agnostic SAM Adaptation for 3D Medical Image
Segmentation [58.53672866662472]
We introduce a modality-agnostic SAM adaptation framework, named as MA-SAM.
Our method roots in the parameter-efficient fine-tuning strategy to update only a small portion of weight increments.
By injecting a series of 3D adapters into the transformer blocks of the image encoder, our method enables the pre-trained 2D backbone to extract third-dimensional information from input data.
arXiv Detail & Related papers (2023-09-16T02:41:53Z) - SurgicalSAM: Efficient Class Promptable Surgical Instrument Segmentation [65.52097667738884]
We introduce SurgicalSAM, a novel end-to-end efficient-tuning approach for SAM to integrate surgical-specific information with SAM's pre-trained knowledge for improved generalisation.
Specifically, we propose a lightweight prototype-based class prompt encoder for tuning, which directly generates prompt embeddings from class prototypes.
In addition, to address the low inter-class variance among surgical instrument categories, we propose contrastive prototype learning.
arXiv Detail & Related papers (2023-08-17T02:51:01Z) - How to Efficiently Adapt Large Segmentation Model(SAM) to Medical Images [15.181219203629643]
Segment Anything (SAM) exhibits impressive capabilities in zero-shot segmentation for natural images.
However, when applied to medical images, SAM suffers from noticeable performance drop.
In this work, we propose to freeze SAM encoder and finetune a lightweight task-specific prediction head.
arXiv Detail & Related papers (2023-06-23T18:34:30Z) - AutoSAM: Adapting SAM to Medical Images by Overloading the Prompt
Encoder [101.28268762305916]
In this work, we replace Segment Anything Model with an encoder that operates on the same input image.
We obtain state-of-the-art results on multiple medical images and video benchmarks.
For inspecting the knowledge within it, and providing a lightweight segmentation solution, we also learn to decode it into a mask by a shallow deconvolution network.
arXiv Detail & Related papers (2023-06-10T07:27:00Z) - Medical SAM Adapter: Adapting Segment Anything Model for Medical Image
Segmentation [51.770805270588625]
The Segment Anything Model (SAM) has recently gained popularity in the field of image segmentation.
Recent studies and individual experiments have shown that SAM underperforms in medical image segmentation.
We propose the Medical SAM Adapter (Med-SA), which incorporates domain-specific medical knowledge into the segmentation model.
arXiv Detail & Related papers (2023-04-25T07:34:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.