論文の概要: A new approach to generalisation error of machine learning algorithms:
Estimates and convergence
- arxiv url: http://arxiv.org/abs/2306.13784v1
- Date: Fri, 23 Jun 2023 20:57:31 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-27 19:07:06.396748
- Title: A new approach to generalisation error of machine learning algorithms:
Estimates and convergence
- Title(参考訳): 機械学習アルゴリズムの一般化誤りに対する新しいアプローチ:推定と収束
- Authors: Michail Loulakis, Charalambos G. Makridakis
- Abstract要約: 本稿では,(一般化)誤差の推定と収束に対する新しいアプローチを提案する。
本研究の結果は,ニューラルネットワークの構造的仮定を伴わない誤差の推定を含む。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: In this work we consider a model problem of deep neural learning, namely the
learning of a given function when it is assumed that we have access to its
point values on a finite set of points. The deep neural network interpolant is
the the resulting approximation of f, which is obtained by a typical machine
learning algorithm involving a given DNN architecture and an optimisation step,
which is assumed to be solved exactly. These are among the simplest regression
algorithms based on neural networks. In this work we introduce a new approach
to the estimation of the (generalisation) error and to convergence. Our results
include (i) estimates of the error without any structural assumption on the
neural networks and under mild regularity assumptions on the learning function
f (ii) convergence of the approximations to the target function f by only
requiring that the neural network spaces have appropriate approximation
capability.
- Abstract(参考訳): 本研究では、深層学習のモデル問題、すなわち有限個の点集合上の点値にアクセスできると仮定されたとき、与えられた関数の学習について考察する。
ディープニューラルネットワーク補間器は、与えられたDNNアーキテクチャと正確に解けると仮定された最適化ステップを含む典型的な機械学習アルゴリズムによって得られるfの近似である。
これらはニューラルネットワークに基づく最も単純な回帰アルゴリズムの1つである。
本研究では,(一般化)誤差の推定と収束に対する新しいアプローチを提案する。
結果には
(i)ニューラルネットワークにおける構造的仮定を伴わない誤りの推定と、学習関数f上の軽度正規性仮定
(ii)ニューラルネットワーク空間が適切な近似能力を持つだけで、対象関数fへの近似の収束。
関連論文リスト
- SEF: A Method for Computing Prediction Intervals by Shifting the Error Function in Neural Networks [0.0]
本稿では,このカテゴリに属する新しい手法としてSEF(Shifting the Error Function)法を提案する。
提案手法では,1つのニューラルネットワークを3回トレーニングすることで,与えられた問題に対して対応する上境界と下限とを推定する。
この革新的なプロセスは、PIを効果的に生成し、不確実性定量化のための堅牢で効率的な技術をもたらす。
論文 参考訳(メタデータ) (2024-09-08T19:46:45Z) - SGD method for entropy error function with smoothing l0 regularization for neural networks [3.108634881604788]
エントロピー誤差関数はニューラルネットワークで広く使われている。
本稿では,フィードフォワードニューラルネットワークの規則化を円滑に行うエントロピー関数を提案する。
ニューラルネットワークを効果的に学習し、より正確な予測を可能にするため、私たちの仕事は新しくなっています。
論文 参考訳(メタデータ) (2024-05-28T19:54:26Z) - The limitation of neural nets for approximation and optimization [0.0]
最適化問題における目的関数の近似と最小化のために,ニューラルネットワークを代理モデルとして用いることに関心がある。
本研究は、一般的な非線形最適化テスト問題の目的関数を近似する最適なアクティベーション関数を決定することから始まる。
論文 参考訳(メタデータ) (2023-11-21T00:21:15Z) - HNS: An Efficient Hermite Neural Solver for Solving Time-Fractional
Partial Differential Equations [12.520882780496738]
時間-屈折偏微分方程式を解くための高精度ハーマイトニューラルソルバー(HNS)を提案する。
実験の結果,HNSは既存のL1法に比べて精度と柔軟性が著しく向上していることがわかった。
論文 参考訳(メタデータ) (2023-10-07T12:44:47Z) - Semantic Strengthening of Neuro-Symbolic Learning [85.6195120593625]
ニューロシンボリックアプローチは一般に確率論的目的のファジィ近似を利用する。
トラクタブル回路において,これを効率的に計算する方法を示す。
我々は,Warcraftにおける最小コストパスの予測,最小コスト完全マッチングの予測,スドクパズルの解法という3つの課題に対して,アプローチを検証した。
論文 参考訳(メタデータ) (2023-02-28T00:04:22Z) - A Recursively Recurrent Neural Network (R2N2) Architecture for Learning
Iterative Algorithms [64.3064050603721]
本研究では,リカレントニューラルネットワーク (R2N2) にランゲ・クッタニューラルネットワークを一般化し,リカレントニューラルネットワークを最適化した反復アルゴリズムの設計を行う。
本稿では, 線形方程式系に対するクリロフ解法, 非線形方程式系に対するニュートン・クリロフ解法, 常微分方程式に対するルンゲ・クッタ解法と類似の繰り返しを計算問題クラスの入力・出力データに対して提案した超構造内における重みパラメータの正規化について述べる。
論文 参考訳(メタデータ) (2022-11-22T16:30:33Z) - Scalable computation of prediction intervals for neural networks via
matrix sketching [79.44177623781043]
既存の不確実性推定アルゴリズムでは、モデルアーキテクチャとトレーニング手順を変更する必要がある。
本研究では、与えられたトレーニングされたニューラルネットワークに適用し、近似予測間隔を生成できる新しいアルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-05-06T13:18:31Z) - Multigoal-oriented dual-weighted-residual error estimation using deep
neural networks [0.0]
ディープラーニングは、関数を近似する柔軟性の高い強力なツールだと考えられている。
提案手法は,誤差の局所化に付随する問題を解く後続誤差推定法に基づく。
複数のゴール関数に対する後方誤差推定を得るために,効率的で実装が容易なアルゴリズムを開発した。
論文 参考訳(メタデータ) (2021-12-21T16:59:44Z) - Modeling from Features: a Mean-field Framework for Over-parameterized
Deep Neural Networks [54.27962244835622]
本稿では、オーバーパラメータ化ディープニューラルネットワーク(DNN)のための新しい平均場フレームワークを提案する。
このフレームワークでは、DNNは連続的な極限におけるその特徴に対する確率測度と関数によって表現される。
本稿では、標準DNNとResidual Network(Res-Net)アーキテクチャを通してフレームワークを説明する。
論文 参考訳(メタデータ) (2020-07-03T01:37:16Z) - Provably Efficient Neural Estimation of Structural Equation Model: An
Adversarial Approach [144.21892195917758]
一般化構造方程式モデル(SEM)のクラスにおける推定について検討する。
線形作用素方程式をmin-maxゲームとして定式化し、ニューラルネットワーク(NN)でパラメータ化し、勾配勾配を用いてニューラルネットワークのパラメータを学習する。
提案手法は,サンプル分割を必要とせず,確固とした収束性を持つNNをベースとしたSEMの抽出可能な推定手順を初めて提供する。
論文 参考訳(メタデータ) (2020-07-02T17:55:47Z) - Measuring Model Complexity of Neural Networks with Curve Activation
Functions [100.98319505253797]
本稿では,線形近似ニューラルネットワーク(LANN)を提案する。
ニューラルネットワークのトレーニングプロセスを実験的に検討し、オーバーフィッティングを検出する。
我々は、$L1$と$L2$正規化がモデルの複雑さの増加を抑制することを発見した。
論文 参考訳(メタデータ) (2020-06-16T07:38:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。