論文の概要: Tuning structure learning algorithms with out-of-sample and resampling
strategies
- arxiv url: http://arxiv.org/abs/2306.13932v1
- Date: Sat, 24 Jun 2023 10:39:44 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-27 18:09:45.720270
- Title: Tuning structure learning algorithms with out-of-sample and resampling
strategies
- Title(参考訳): サンプル外および再サンプリング戦略を用いた構造学習アルゴリズムのチューニング
- Authors: Kiattikun Chobtham, Anthony C. Constantinou
- Abstract要約: 構造学習のためのサンプル外チューニングは、構造学習のための最適なハイパーパラメータ構成を推定するために、サンプル外および再サンプリング戦略を採用する。
OTSLを用いることで,最先端技術と比較してグラフィカルな精度が向上することを示す。
- 参考スコア(独自算出の注目度): 6.85316573653194
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: One of the challenges practitioners face when applying structure learning
algorithms to their data involves determining a set of hyperparameters;
otherwise, a set of hyperparameter defaults is assumed. The optimal
hyperparameter configuration often depends on multiple factors, including the
size and density of the usually unknown underlying true graph, the sample size
of the input data, and the structure learning algorithm. We propose a novel
hyperparameter tuning method, called the Out-of-sample Tuning for Structure
Learning (OTSL), that employs out-of-sample and resampling strategies to
estimate the optimal hyperparameter configuration for structure learning, given
the input data set and structure learning algorithm. Synthetic experiments show
that employing OTSL as a means to tune the hyperparameters of hybrid and
score-based structure learning algorithms leads to improvements in graphical
accuracy compared to the state-of-the-art. We also illustrate the applicability
of this approach to real datasets from different disciplines.
- Abstract(参考訳): データに構造学習アルゴリズムを適用する際の課題の1つは、ハイパーパラメータのセットを決定することであり、そうでなければ、ハイパーパラメータのデフォルトセットが想定される。
最適なハイパーパラメータ構成は、通常未知の真のグラフのサイズと密度、入力データのサンプルサイズ、構造学習アルゴリズムなど、複数の要因に依存することが多い。
入力データセットと構造学習アルゴリズムから,構造学習のための最適なハイパーパラメータ構成を推定するために,アウトオブサンプルと再サンプリング戦略を用いた構造学習のためのアウトオブサンプルチューニング(OTSL)と呼ばれる新しいハイパーパラメータチューニング手法を提案する。
合成実験により、ハイブリッドおよびスコアに基づく構造学習アルゴリズムのハイパーパラメータを調整するための手段としてOTSLを用いると、最先端技術と比較してグラフィカルな精度が向上することが示された。
また、異なる分野の実際のデータセットに対するこのアプローチの適用性についても説明する。
関連論文リスト
- Benchmark on Drug Target Interaction Modeling from a Structure Perspective [48.60648369785105]
薬物と標的の相互作用の予測は、薬物の発見と設計に不可欠である。
グラフニューラルネットワーク(GNN)やトランスフォーマーに基づく最近の手法は、さまざまなデータセットで例外的なパフォーマンスを示している。
我々は,GNNベースと暗黙的(トランスフォーマーベース)構造学習アルゴリズムを多用することにより,構造の観点からの薬物-標的相互作用モデリングの総合的な調査とベンチマークを行う。
論文 参考訳(メタデータ) (2024-07-04T16:56:59Z) - A Structural-Clustering Based Active Learning for Graph Neural Networks [16.85038790429607]
グラフ構造化データに特化して設計された能動学習(SPA)の改善のための構造クラスタリングページランク法を提案する。
SPAは,SCANアルゴリズムを用いたコミュニティ検出とPageRankスコアリング手法を統合し,効率的かつ有益なサンプル選択を行う。
論文 参考訳(メタデータ) (2023-12-07T14:04:38Z) - Robustness of Algorithms for Causal Structure Learning to Hyperparameter
Choice [2.3020018305241337]
ハイパーパラメータチューニングは、どんなアルゴリズムでも最先端と予測性能の低さを区別することができる。
本稿では,ハイパーパラメータ選択が因果構造学習タスクに及ぼす影響について検討する。
論文 参考訳(メタデータ) (2023-10-27T15:34:08Z) - AUTOMATA: Gradient Based Data Subset Selection for Compute-Efficient
Hyper-parameter Tuning [72.54359545547904]
ハイパーパラメータチューニングのための勾配に基づくサブセット選択フレームワークを提案する。
ハイパーパラメータチューニングに勾配ベースのデータサブセットを用いることで、3$times$-30$times$のターンアラウンド時間とスピードアップが大幅に向上することを示す。
論文 参考訳(メタデータ) (2022-03-15T19:25:01Z) - Automatic tuning of hyper-parameters of reinforcement learning
algorithms using Bayesian optimization with behavioral cloning [0.0]
強化学習(RL)では、学習エージェントが収集したデータの情報内容は多くのハイパーパラメータの設定に依存する。
本研究では,ベイズ最適化を用いた自律的ハイパーパラメータ設定手法を提案する。
実験は、他の手作業による調整や最適化ベースのアプローチと比較して、有望な結果を示している。
論文 参考訳(メタデータ) (2021-12-15T13:10:44Z) - Experimental Investigation and Evaluation of Model-based Hyperparameter
Optimization [0.3058685580689604]
本稿では、一般的な機械学習アルゴリズムの理論的および実践的な結果の概要を述べる。
Rパッケージmlrは機械学習モデルの統一インターフェースとして使用される。
論文 参考訳(メタデータ) (2021-07-19T11:37:37Z) - Online hyperparameter optimization by real-time recurrent learning [57.01871583756586]
ニューラルネットワーク(rnn)におけるハイパーパラメータ最適化とパラメータ学習の類似性を活用した。
RNNのための学習済みのオンライン学習アルゴリズムのファミリーを適応させ、ハイパーパラメータとネットワークパラメータを同時に調整します。
この手順は、通常の方法に比べて、ウォールクロック時間のほんの少しで、体系的に一般化性能が向上する。
論文 参考訳(メタデータ) (2021-02-15T19:36:18Z) - An AI-Assisted Design Method for Topology Optimization Without
Pre-Optimized Training Data [68.8204255655161]
トポロジ最適化に基づくAI支援設計手法を提示し、最適化された設計を直接的に得ることができる。
設計は、境界条件と入力データとしての充填度に基づいて、人工ニューラルネットワーク、予測器によって提供される。
論文 参考訳(メタデータ) (2020-12-11T14:33:27Z) - TFPnP: Tuning-free Plug-and-Play Proximal Algorithm with Applications to
Inverse Imaging Problems [22.239477171296056]
Plug-and-Play (MM) は非最適化フレームワークであり、例えば、数値アルゴリズムと高度なデノゲーション前処理を組み合わせたものである。
我々は、学習戦略とともに最先端の成果である、より難解な問題に対するいくつかの実践的考察について論じる。
論文 参考訳(メタデータ) (2020-11-18T14:19:30Z) - Adaptive pruning-based optimization of parameterized quantum circuits [62.997667081978825]
Variisyハイブリッド量子古典アルゴリズムは、ノイズ中間量子デバイスの使用を最大化する強力なツールである。
我々は、変分量子アルゴリズムで使用されるそのようなアンサーゼを「効率的な回路訓練」(PECT)と呼ぶ戦略を提案する。
すべてのアンサッツパラメータを一度に最適化する代わりに、PECTは一連の変分アルゴリズムを起動する。
論文 参考訳(メタデータ) (2020-10-01T18:14:11Z) - AdaS: Adaptive Scheduling of Stochastic Gradients [50.80697760166045]
我々は、textit "knowledge gain" と textit "mapping condition" の概念を導入し、Adaptive Scheduling (AdaS) と呼ばれる新しいアルゴリズムを提案する。
実験によると、AdaSは派生した指標を用いて、既存の適応学習手法よりも高速な収束と優れた一般化、そして(b)いつトレーニングを中止するかを決定するための検証セットへの依存の欠如を示す。
論文 参考訳(メタデータ) (2020-06-11T16:36:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。