論文の概要: Benchmark on Drug Target Interaction Modeling from a Structure Perspective
- arxiv url: http://arxiv.org/abs/2407.04055v1
- Date: Thu, 4 Jul 2024 16:56:59 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-08 17:14:12.629089
- Title: Benchmark on Drug Target Interaction Modeling from a Structure Perspective
- Title(参考訳): 構造から見た薬物標的相互作用モデリングのベンチマーク
- Authors: Xinnan Zhang, Jialin Wu, Junyi Xie, Tianlong Chen, Kaixiong Zhou,
- Abstract要約: 薬物と標的の相互作用の予測は、薬物の発見と設計に不可欠である。
グラフニューラルネットワーク(GNN)やトランスフォーマーに基づく最近の手法は、さまざまなデータセットで例外的なパフォーマンスを示している。
我々は,GNNベースと暗黙的(トランスフォーマーベース)構造学習アルゴリズムを多用することにより,構造の観点からの薬物-標的相互作用モデリングの総合的な調査とベンチマークを行う。
- 参考スコア(独自算出の注目度): 48.60648369785105
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The prediction modeling of drug-target interactions is crucial to drug discovery and design, which has seen rapid advancements owing to deep learning technologies. Recently developed methods, such as those based on graph neural networks (GNNs) and Transformers, demonstrate exceptional performance across various datasets by effectively extracting structural information. However, the benchmarking of these novel methods often varies significantly in terms of hyperparameter settings and datasets, which limits algorithmic progress. In view of these, we conduct a comprehensive survey and benchmark for drug-target interaction modeling from a structure perspective, via integrating tens of explicit (i.e., GNN-based) and implicit (i.e., Transformer-based) structure learning algorithms. To this end, we first unify the hyperparameter setting within each class of structure learning methods. Moreover, we conduct a macroscopical comparison between these two classes of encoding strategies as well as the different featurization techniques that inform molecules' chemical and physical properties. We then carry out the microscopical comparison between all the integrated models across the six datasets, via comprehensively benchmarking their effectiveness and efficiency. Remarkably, the summarized insights from the benchmark studies lead to the design of model combos. We demonstrate that our combos can achieve new state-of-the-art performance on various datasets associated with cost-effective memory and computation. Our code is available at \hyperlink{https://github.com/justinwjl/GTB-DTI/tree/main}{https://github.com/justinwjl/GTB-DTI/tree/main}.
- Abstract(参考訳): 薬物-標的相互作用の予測モデリングは、深層学習技術により急速に進歩した薬物発見と設計に不可欠である。
最近開発されたグラフニューラルネットワーク(GNN)やトランスフォーマーに基づく手法は、構造情報を効果的に抽出することで、様々なデータセット間で例外的な性能を示す。
しかし、これらの新しい手法のベンチマークは、アルゴリズムの進歩を制限するハイパーパラメータ設定とデータセットの点で大きく異なることが多い。
これらの観点から、GNNベースと暗黙的(トランスフォーマーベース)構造学習アルゴリズムの数十点を統合することにより、構造の観点からの薬物-標的相互作用モデリングの総合的な調査とベンチマークを行う。
そこで我々はまず,構造学習手法の各クラスにハイパーパラメータ設定を統一する。
さらに、これらの2種類の符号化戦略と、分子の化学的および物理的性質を知らせる異なる創製技術とのマクロな比較を行う。
次に、その有効性と効率を総合的にベンチマークすることで、6つのデータセットにまたがるすべての統合モデル間の顕微鏡的比較を行う。
注目すべきことに、ベンチマーク研究の要約された洞察は、モデルコンボの設計に繋がる。
コスト効率のよいメモリと計算に関連した各種データセットに対して,我々のコンボが新たな最先端性能を実現することを実証した。
我々のコードは \hyperlink{https://github.com/justinwjl/GTB-DTI/tree/main}{https://github.com/justinwjl/GTB-DTI/tree/main} で利用可能です。
関連論文リスト
- HGTDP-DTA: Hybrid Graph-Transformer with Dynamic Prompt for Drug-Target Binding Affinity Prediction [14.866669337498257]
薬物標的結合親和性(DTA)は薬物スクリーニングの重要な基準である。
本研究では,HGTDP-DTAと呼ばれる新しいDTA予測手法を提案する。
本手法は,各薬物・標的ペアに対してコンテキスト特異的なプロンプトを生成し,ユニークな相互作用を捕捉するモデルの能力を高める。
Davis と KIBA の2つの広く使われている公開データセットの実験により、HGTDP-DTA は予測性能と一般化能力の両方において最先端のDTA予測手法より優れていることが示された。
論文 参考訳(メタデータ) (2024-06-25T16:33:33Z) - Graph Representation Learning Strategies for Omics Data: A Case Study on Parkinson's Disease [13.630617713928197]
グラフニューラルネットワークは、古典的な統計学と機械学習の方法に代わる有望な代替手段として登場した。
本研究では,ケースコントロール分類のためのグラフ表現学習モデルについて検討する。
タンパク質-タンパク質相互作用やメタボライト-メタボライト相互作用を含む,サンプル類似性ネットワークと分子相互作用ネットワークから得られたトポロジーを比較した。
論文 参考訳(メタデータ) (2024-06-20T16:06:39Z) - Geometric Graph Learning with Extended Atom-Types Features for
Protein-Ligand Binding Affinity Prediction [0.17132914341329847]
我々は、SYBYLのような広範囲な原子タイプを統合することにより、タンパク質-リガンド相互作用の研究のためにグラフベースの学習者をアップグレードする。
我々のアプローチでは、$textsybyltextGGL$-Scoreと$texteciftextGGL$-Scoreの2つの異なるメソッドが生成される。
SYBYL atom-type model $textsybyltextGGL$-Score はすべてのベンチマークで他の手法よりも優れています。
論文 参考訳(メタデータ) (2023-01-15T21:30:21Z) - Drug Synergistic Combinations Predictions via Large-Scale Pre-Training
and Graph Structure Learning [82.93806087715507]
薬物併用療法は、より有効で安全性の低い疾患治療のための確立された戦略である。
ディープラーニングモデルは、シナジスティックな組み合わせを発見する効率的な方法として登場した。
我々のフレームワークは、他のディープラーニングベースの手法と比較して最先端の結果を達成する。
論文 参考訳(メタデータ) (2023-01-14T15:07:43Z) - Learning from Temporal Spatial Cubism for Cross-Dataset Skeleton-based
Action Recognition [88.34182299496074]
アクションラベルはソースデータセットでのみ利用可能だが、トレーニング段階のターゲットデータセットでは利用できない。
我々は,2つの骨格に基づく行動データセット間の領域シフトを低減するために,自己スーパービジョン方式を利用する。
時間的セグメントや人体部分のセグメンテーションとパーフォーミングにより、我々は2つの自己教師あり学習分類タスクを設計する。
論文 参考訳(メタデータ) (2022-07-17T07:05:39Z) - HyperImpute: Generalized Iterative Imputation with Automatic Model
Selection [77.86861638371926]
カラムワイズモデルを適応的かつ自動的に構成するための一般化反復計算フレームワークを提案する。
既製の学習者,シミュレータ,インターフェースを備えた具体的な実装を提供する。
論文 参考訳(メタデータ) (2022-06-15T19:10:35Z) - Learning Neural Causal Models with Active Interventions [83.44636110899742]
本稿では,データ生成プロセスの根底にある因果構造を素早く識別する能動的介入ターゲット機構を提案する。
本手法は,ランダムな介入ターゲティングと比較して,要求される対話回数を大幅に削減する。
シミュレーションデータから実世界のデータまで,複数のベンチマークにおいて優れた性能を示す。
論文 参考訳(メタデータ) (2021-09-06T13:10:37Z) - Drug-Target Interaction Prediction with Graph Attention networks [26.40249934284416]
DTI予測のためのエンドツーエンドフレームワークであるDTI-GAT(Drug-Target Interaction Prediction with Graph Attention Network)を提案する。
DTI-GATは、注目機構を備えたグラフ構造化データで動作するディープネットワークニューラルアーキテクチャを組み込んでいる。
実験により、DTI-GATはバイナリDTI予測問題において、様々な最先端システムより優れていることが示された。
論文 参考訳(メタデータ) (2021-07-10T07:06:36Z) - PredRNN: A Recurrent Neural Network for Spatiotemporal Predictive
Learning [109.84770951839289]
歴史的文脈からビジュアルダイナミクスを学習するための新しいリカレントネットワークであるPredRNNを紹介する。
本手法は,3つの標準データセット上で高い競争結果が得られることを示す。
論文 参考訳(メタデータ) (2021-03-17T08:28:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。