DiffDTM: A conditional structure-free framework for bioactive molecules
generation targeted for dual proteins
- URL: http://arxiv.org/abs/2306.13957v1
- Date: Sat, 24 Jun 2023 13:08:55 GMT
- Title: DiffDTM: A conditional structure-free framework for bioactive molecules
generation targeted for dual proteins
- Authors: Lei Huang, Zheng Yuan, Huihui Yan, Rong Sheng, Linjing Liu, Fuzhou
Wang, Weidun Xie, Nanjun Chen, Fei Huang, Songfang Huang, Ka-Chun Wong,
Yaoyun Zhang
- Abstract summary: DiffDTM is a conditional structure-free deep generative model based on a diffusion model for dual targets based molecule generation.
We have conducted comprehensive multi-view experiments to demonstrate that DiffDTM can generate drug-like, synthesis-accessible, novel, and high-binding affinity molecules.
The experimental results indicate that DiffDTM can be easily plugged into unseen dual targets to generate bioactive molecules.
- Score: 35.72694124335747
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Advances in deep generative models shed light on de novo molecule generation
with desired properties. However, molecule generation targeted for dual protein
targets still faces formidable challenges including protein 3D structure data
requisition for model training, auto-regressive sampling, and model
generalization for unseen targets. Here, we proposed DiffDTM, a novel
conditional structure-free deep generative model based on a diffusion model for
dual targets based molecule generation to address the above issues.
Specifically, DiffDTM receives protein sequences and molecular graphs as inputs
instead of protein and molecular conformations and incorporates an information
fusion module to achieve conditional generation in a one-shot manner. We have
conducted comprehensive multi-view experiments to demonstrate that DiffDTM can
generate drug-like, synthesis-accessible, novel, and high-binding affinity
molecules targeting specific dual proteins, outperforming the state-of-the-art
(SOTA) models in terms of multiple evaluation metrics. Furthermore, we utilized
DiffDTM to generate molecules towards dopamine receptor D2 and
5-hydroxytryptamine receptor 1A as new antipsychotics. The experimental results
indicate that DiffDTM can be easily plugged into unseen dual targets to
generate bioactive molecules, addressing the issues of requiring insufficient
active molecule data for training as well as the need to retrain when
encountering new targets.
Related papers
- LDMol: Text-to-Molecule Diffusion Model with Structurally Informative Latent Space [55.5427001668863]
We present a novel latent diffusion model dubbed LDMol for text-conditioned molecule generation.
LDMol comprises a molecule autoencoder that produces a learnable and structurally informative feature space.
We show that LDMol can be applied to downstream tasks such as molecule-to-text retrieval and text-guided molecule editing.
arXiv Detail & Related papers (2024-05-28T04:59:13Z) - Molecule Design by Latent Prompt Transformer [76.2112075557233]
This work explores the challenging problem of molecule design by framing it as a conditional generative modeling task.
We propose a novel generative model comprising three components: (1) a latent vector with a learnable prior distribution; (2) a molecule generation model based on a causal Transformer, which uses the latent vector as a prompt; and (3) a property prediction model that predicts a molecule's target properties and/or constraint values using the latent prompt.
arXiv Detail & Related papers (2024-02-27T03:33:23Z) - Molecule Design by Latent Space Energy-Based Modeling and Gradual
Distribution Shifting [53.44684898432997]
Generation of molecules with desired chemical and biological properties is critical for drug discovery.
We propose a probabilistic generative model to capture the joint distribution of molecules and their properties.
Our method achieves very strong performances on various molecule design tasks.
arXiv Detail & Related papers (2023-06-09T03:04:21Z) - Functional-Group-Based Diffusion for Pocket-Specific Molecule Generation and Elaboration [63.23362798102195]
We propose D3FG, a functional-group-based diffusion model for pocket-specific molecule generation and elaboration.
D3FG decomposes molecules into two categories of components: functional groups defined as rigid bodies and linkers as mass points.
In the experiments, our method can generate molecules with more realistic 3D structures, competitive affinities toward the protein targets, and better drug properties.
arXiv Detail & Related papers (2023-05-30T06:41:20Z) - SILVR: Guided Diffusion for Molecule Generation [0.0]
We introduce a machine-learning method for conditioning an existing generative model without retraining.
The model allows the generation of new molecules that fit into a binding site of a protein based on fragment hits.
We show that moderate SILVR rates make it possible to generate new molecules of similar shape to the original fragments.
arXiv Detail & Related papers (2023-04-21T11:47:38Z) - Target Specific De Novo Design of Drug Candidate Molecules with Graph Transformer-based Generative Adversarial Networks [0.0]
We propose an end-to-end generative system, DrugGEN, for the de novo design of drug candidate molecules.
The system is trained using a large dataset of drug-like compounds and target-specific bioactive molecules.
Using the open-access DrugGEN, it is possible to easily train models for other druggable proteins.
arXiv Detail & Related papers (2023-02-15T18:59:27Z) - Widely Used and Fast De Novo Drug Design by a Protein Sequence-Based
Reinforcement Learning Model [4.815696666006742]
Structure-based de novo method can overcome the data scarcity of active by incorporating drug-target interaction into deep generative architectures.
Here, we demonstrate a widely used and fast protein sequence-based reinforcement learning model for drug discovery.
As a proof of concept, the RL model was utilized to design molecules for four targets.
arXiv Detail & Related papers (2022-08-14T10:41:52Z) - In-Pocket 3D Graphs Enhance Ligand-Target Compatibility in Generative
Small-Molecule Creation [0.0]
We present a graph-based generative modeling technology that encodes explicit 3D protein-ligand contacts within a relational graph architecture.
The models combine a conditional variational autoencoder that allows for activity-specific molecule generation with putative contact generation that provides predictions of molecular interactions within the target binding pocket.
arXiv Detail & Related papers (2022-04-05T22:53:51Z) - Benchmarking Deep Graph Generative Models for Optimizing New Drug
Molecules for COVID-19 [11.853524110656991]
Design of new drug compounds with target properties is a key area of research in generative modeling.
We present a small drug molecule design pipeline based on graph-generative models and a comparison study of two state-of-the-art graph generative models for designing COVID-19 targeted drug candidates.
arXiv Detail & Related papers (2021-02-09T17:49:26Z) - CogMol: Target-Specific and Selective Drug Design for COVID-19 Using
Deep Generative Models [74.58583689523999]
We propose an end-to-end framework, named CogMol, for designing new drug-like small molecules targeting novel viral proteins.
CogMol combines adaptive pre-training of a molecular SMILES Variational Autoencoder (VAE) and an efficient multi-attribute controlled sampling scheme.
CogMol handles multi-constraint design of synthesizable, low-toxic, drug-like molecules with high target specificity and selectivity.
arXiv Detail & Related papers (2020-04-02T18:17:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.