SILVR: Guided Diffusion for Molecule Generation
- URL: http://arxiv.org/abs/2304.10905v1
- Date: Fri, 21 Apr 2023 11:47:38 GMT
- Title: SILVR: Guided Diffusion for Molecule Generation
- Authors: Nicholas T. Runcie, Antonia S. J. S. Mey
- Abstract summary: We introduce a machine-learning method for conditioning an existing generative model without retraining.
The model allows the generation of new molecules that fit into a binding site of a protein based on fragment hits.
We show that moderate SILVR rates make it possible to generate new molecules of similar shape to the original fragments.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Computationally generating novel synthetically accessible compounds with high
affinity and low toxicity is a great challenge in drug design. Machine-learning
models beyond conventional pharmacophoric methods have shown promise in
generating novel small molecule compounds, but require significant tuning for a
specific protein target. Here, we introduce a method called selective iterative
latent variable refinement (SILVR) for conditioning an existing diffusion-based
equivariant generative model without retraining. The model allows the
generation of new molecules that fit into a binding site of a protein based on
fragment hits. We use the SARS-CoV-2 Main protease fragments from Diamond
X-Chem that form part of the COVID Moonshot project as a reference dataset for
conditioning the molecule generation. The SILVR rate controls the extent of
conditioning and we show that moderate SILVR rates make it possible to generate
new molecules of similar shape to the original fragments, meaning that the new
molecules fit the binding site without knowledge of the protein. We can also
merge up to 3 fragments into a new molecule without affecting the quality of
molecules generated by the underlying generative model. Our method is
generalizable to any protein target with known fragments and any
diffusion-based model for molecule generation.
Related papers
- LDMol: Text-to-Molecule Diffusion Model with Structurally Informative Latent Space [55.5427001668863]
We present a novel latent diffusion model dubbed LDMol for text-conditioned molecule generation.
LDMol comprises a molecule autoencoder that produces a learnable and structurally informative feature space.
We show that LDMol can be applied to downstream tasks such as molecule-to-text retrieval and text-guided molecule editing.
arXiv Detail & Related papers (2024-05-28T04:59:13Z) - AUTODIFF: Autoregressive Diffusion Modeling for Structure-based Drug Design [16.946648071157618]
We propose a diffusion-based fragment-wise autoregressive generation model for structure-based drug design (SBDD)
We design a novel molecule assembly strategy named conformal motif that preserves the conformation of local structures of molecules first.
We then encode the interaction of the protein-ligand complex with an SE(3)-equivariant convolutional network and generate molecules motif-by-motif with diffusion modeling.
arXiv Detail & Related papers (2024-04-02T14:44:02Z) - DecompDiff: Diffusion Models with Decomposed Priors for Structure-Based Drug Design [62.68420322996345]
Existing structured-based drug design methods treat all ligand atoms equally.
We propose a new diffusion model, DecompDiff, with decomposed priors over arms and scaffold.
Our approach achieves state-of-the-art performance in generating high-affinity molecules.
arXiv Detail & Related papers (2024-02-26T05:21:21Z) - FREED++: Improving RL Agents for Fragment-Based Molecule Generation by
Thorough Reproduction [33.57089414199478]
Reinforcement Learning (RL) has emerged as a promising approach to generating molecules with the docking score (DS) as a reward.
We reproduce, scrutinize and improve the recent model for molecule generation called FREED (arXiv:2110.01219)
arXiv Detail & Related papers (2024-01-18T09:54:19Z) - DiffDTM: A conditional structure-free framework for bioactive molecules
generation targeted for dual proteins [35.72694124335747]
DiffDTM is a conditional structure-free deep generative model based on a diffusion model for dual targets based molecule generation.
We have conducted comprehensive multi-view experiments to demonstrate that DiffDTM can generate drug-like, synthesis-accessible, novel, and high-binding affinity molecules.
The experimental results indicate that DiffDTM can be easily plugged into unseen dual targets to generate bioactive molecules.
arXiv Detail & Related papers (2023-06-24T13:08:55Z) - Functional-Group-Based Diffusion for Pocket-Specific Molecule Generation and Elaboration [63.23362798102195]
We propose D3FG, a functional-group-based diffusion model for pocket-specific molecule generation and elaboration.
D3FG decomposes molecules into two categories of components: functional groups defined as rigid bodies and linkers as mass points.
In the experiments, our method can generate molecules with more realistic 3D structures, competitive affinities toward the protein targets, and better drug properties.
arXiv Detail & Related papers (2023-05-30T06:41:20Z) - Equivariant 3D-Conditional Diffusion Models for Molecular Linker Design [82.23006955069229]
We propose DiffLinker, an E(3)-equivariant 3D-conditional diffusion model for molecular linker design.
Our model places missing atoms in between and designs a molecule incorporating all the initial fragments.
We demonstrate that DiffLinker outperforms other methods on the standard datasets generating more diverse and synthetically-accessible molecules.
arXiv Detail & Related papers (2022-10-11T09:13:37Z) - Retrieval-based Controllable Molecule Generation [63.44583084888342]
We propose a new retrieval-based framework for controllable molecule generation.
We use a small set of molecules to steer the pre-trained generative model towards synthesizing molecules that satisfy the given design criteria.
Our approach is agnostic to the choice of generative models and requires no task-specific fine-tuning.
arXiv Detail & Related papers (2022-08-23T17:01:16Z) - Exploring Chemical Space with Score-based Out-of-distribution Generation [57.15855198512551]
We propose a score-based diffusion scheme that incorporates out-of-distribution control in the generative differential equation (SDE)
Since some novel molecules may not meet the basic requirements of real-world drugs, MOOD performs conditional generation by utilizing the gradients from a property predictor.
We experimentally validate that MOOD is able to explore the chemical space beyond the training distribution, generating molecules that outscore ones found with existing methods, and even the top 0.01% of the original training pool.
arXiv Detail & Related papers (2022-06-06T06:17:11Z) - Fragment-based molecular generative model with high generalization
ability and synthetic accessibility [0.0]
We propose a fragment-based molecular generative model which designs new molecules with target properties.
A key feature of our model is a high generalization ability in terms of property control and fragment types.
We show that the model can generate molecules with the simultaneous control of multiple target properties at a high success rate.
arXiv Detail & Related papers (2021-11-25T04:44:37Z) - De Novo Molecular Generation with Stacked Adversarial Model [24.83456726428956]
Conditional generative adversarial models have recently been proposed as promising approaches for de novo drug design.
We propose a new generative model which extends an existing adversarial autoencoder based model by stacking two models together.
Our stacked approach generates more valid molecules, as well as molecules that are more similar to known drugs.
arXiv Detail & Related papers (2021-10-24T14:23:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.