Private Networked Federated Learning for Nonsmooth Objectives
- URL: http://arxiv.org/abs/2306.14012v2
- Date: Wed, 21 Feb 2024 13:41:55 GMT
- Title: Private Networked Federated Learning for Nonsmooth Objectives
- Authors: Fran\c{c}ois Gauthier, Cristiano Gratton, Naveen K. D. Venkategowda,
Stefan Werner
- Abstract summary: This paper develops a networked federated learning algorithm to solve nonsmooth objective functions.
We use the zero-concentrated differential privacy notion (zCDP) to guarantee the confidentiality of the participants.
We provide complete theoretical proof for the privacy guarantees and the algorithm's convergence to the exact solution.
- Score: 7.278228169713637
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper develops a networked federated learning algorithm to solve
nonsmooth objective functions. To guarantee the confidentiality of the
participants with respect to each other and potential eavesdroppers, we use the
zero-concentrated differential privacy notion (zCDP). Privacy is achieved by
perturbing the outcome of the computation at each client with a
variance-decreasing Gaussian noise. ZCDP allows for better accuracy than the
conventional $(\epsilon, \delta)$-DP and stronger guarantees than the more
recent R\'enyi-DP by assuming adversaries aggregate all the exchanged messages.
The proposed algorithm relies on the distributed Alternating Direction Method
of Multipliers (ADMM) and uses the approximation of the augmented Lagrangian to
handle nonsmooth objective functions. The developed private networked federated
learning algorithm has a competitive privacy accuracy trade-off and handles
nonsmooth and non-strongly convex problems. We provide complete theoretical
proof for the privacy guarantees and the algorithm's convergence to the exact
solution. We also prove under additional assumptions that the algorithm
converges in $O(1/n)$ ADMM iterations. Finally, we observe the performance of
the algorithm in a series of numerical simulations.
Related papers
- Perturb-and-Project: Differentially Private Similarities and Marginals [73.98880839337873]
We revisit the input perturbations framework for differential privacy where noise is added to the input $Ain mathcalS$.
We first design novel efficient algorithms to privately release pair-wise cosine similarities.
We derive a novel algorithm to compute $k$-way marginal queries over $n$ features.
arXiv Detail & Related papers (2024-06-07T12:07:16Z) - Efficient Sparse Least Absolute Deviation Regression with Differential
Privacy [10.414082115202003]
We develop a fast privacy-preserving learning solution for a sparse robust regression problem.
Our algorithm achieves a fast estimation by reformulating the sparse LAD problem as a penalized least square estimation problem.
We show that our algorithm can achieve better privacy and statistical accuracy trade-off compared with the state-of-the-art privacy-preserving regression algorithms.
arXiv Detail & Related papers (2024-01-02T17:13:34Z) - Dynamic Privacy Allocation for Locally Differentially Private Federated
Learning with Composite Objectives [10.528569272279999]
This paper proposes a differentially private federated learning algorithm for strongly convex but possibly nonsmooth problems.
The proposed algorithm adds artificial noise to the shared information to ensure privacy and dynamically allocates the time-varying noise variance to minimize an upper bound of the optimization error.
Numerical results show the superiority of the proposed algorithm over state-of-the-art methods.
arXiv Detail & Related papers (2023-08-02T13:30:33Z) - Theoretically Principled Federated Learning for Balancing Privacy and
Utility [61.03993520243198]
We propose a general learning framework for the protection mechanisms that protects privacy via distorting model parameters.
It can achieve personalized utility-privacy trade-off for each model parameter, on each client, at each communication round in federated learning.
arXiv Detail & Related papers (2023-05-24T13:44:02Z) - Differentially Private Stochastic Gradient Descent with Low-Noise [49.981789906200035]
Modern machine learning algorithms aim to extract fine-grained information from data to provide accurate predictions, which often conflicts with the goal of privacy protection.
This paper addresses the practical and theoretical importance of developing privacy-preserving machine learning algorithms that ensure good performance while preserving privacy.
arXiv Detail & Related papers (2022-09-09T08:54:13Z) - Normalized/Clipped SGD with Perturbation for Differentially Private
Non-Convex Optimization [94.06564567766475]
DP-SGD and DP-NSGD mitigate the risk of large models memorizing sensitive training data.
We show that these two algorithms achieve similar best accuracy while DP-NSGD is comparatively easier to tune than DP-SGD.
arXiv Detail & Related papers (2022-06-27T03:45:02Z) - Differentially Private Federated Learning via Inexact ADMM with Multiple
Local Updates [0.0]
We develop a DP inexact alternating direction method of multipliers algorithm with multiple local updates for federated learning.
We show that our algorithm provides $barepsilon$-DP for every iteration, where $barepsilon$ is a privacy budget controlled by the user.
We demonstrate that our algorithm reduces the testing error by at most $31%$ compared with the existing DP algorithm, while achieving the same level of data privacy.
arXiv Detail & Related papers (2022-02-18T19:58:47Z) - Differentially Private Federated Learning via Inexact ADMM [0.0]
Differential privacy (DP) techniques can be applied to the federated learning model to protect data privacy against inference attacks.
We develop a DP inexact alternating direction method of multipliers algorithm that solves a sequence of trust-region subproblems.
Our algorithm reduces the testing error by at most $22%$ compared with the existing DP algorithm, while achieving the same level of data privacy.
arXiv Detail & Related papers (2021-06-11T02:28:07Z) - No-Regret Algorithms for Private Gaussian Process Bandit Optimization [13.660643701487002]
We consider the ubiquitous problem of gaussian process (GP) bandit optimization from the lens of privacy-preserving statistics.
We propose a solution for differentially private GP bandit optimization that combines a uniform kernel approximator with random perturbations.
Our algorithms maintain differential privacy throughout the optimization procedure and critically do not rely explicitly on the sample path for prediction.
arXiv Detail & Related papers (2021-02-24T18:52:24Z) - Learning with User-Level Privacy [61.62978104304273]
We analyze algorithms to solve a range of learning tasks under user-level differential privacy constraints.
Rather than guaranteeing only the privacy of individual samples, user-level DP protects a user's entire contribution.
We derive an algorithm that privately answers a sequence of $K$ adaptively chosen queries with privacy cost proportional to $tau$, and apply it to solve the learning tasks we consider.
arXiv Detail & Related papers (2021-02-23T18:25:13Z) - Private Stochastic Non-Convex Optimization: Adaptive Algorithms and
Tighter Generalization Bounds [72.63031036770425]
We propose differentially private (DP) algorithms for bound non-dimensional optimization.
We demonstrate two popular deep learning methods on the empirical advantages over standard gradient methods.
arXiv Detail & Related papers (2020-06-24T06:01:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.