Differentially Private Federated Learning via Inexact ADMM with Multiple
Local Updates
- URL: http://arxiv.org/abs/2202.09409v1
- Date: Fri, 18 Feb 2022 19:58:47 GMT
- Title: Differentially Private Federated Learning via Inexact ADMM with Multiple
Local Updates
- Authors: Minseok Ryu and Kibaek Kim
- Abstract summary: We develop a DP inexact alternating direction method of multipliers algorithm with multiple local updates for federated learning.
We show that our algorithm provides $barepsilon$-DP for every iteration, where $barepsilon$ is a privacy budget controlled by the user.
We demonstrate that our algorithm reduces the testing error by at most $31%$ compared with the existing DP algorithm, while achieving the same level of data privacy.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Differential privacy (DP) techniques can be applied to the federated learning
model to statistically guarantee data privacy against inference attacks to
communication among the learning agents. While ensuring strong data privacy,
however, the DP techniques hinder achieving a greater learning performance. In
this paper we develop a DP inexact alternating direction method of multipliers
algorithm with multiple local updates for federated learning, where a sequence
of convex subproblems is solved with the objective perturbation by random
noises generated from a Laplace distribution. We show that our algorithm
provides $\bar{\epsilon}$-DP for every iteration, where $\bar{\epsilon}$ is a
privacy budget controlled by the user. We also present convergence analyses of
the proposed algorithm. Using MNIST and FEMNIST datasets for the image
classification, we demonstrate that our algorithm reduces the testing error by
at most $31\%$ compared with the existing DP algorithm, while achieving the
same level of data privacy. The numerical experiment also shows that our
algorithm converges faster than the existing algorithm.
Related papers
- Private Networked Federated Learning for Nonsmooth Objectives [7.278228169713637]
This paper develops a networked federated learning algorithm to solve nonsmooth objective functions.
We use the zero-concentrated differential privacy notion (zCDP) to guarantee the confidentiality of the participants.
We provide complete theoretical proof for the privacy guarantees and the algorithm's convergence to the exact solution.
arXiv Detail & Related papers (2023-06-24T16:13:28Z) - Differentially-Private Hierarchical Clustering with Provable
Approximation Guarantees [79.59010418610625]
We study differentially private approximation algorithms for hierarchical clustering.
We show strong lower bounds for the problem: that any $epsilon$-DP algorithm must exhibit $O(|V|2/ epsilon)$-additive error for an input dataset.
We propose a private $1+o(1)$ approximation algorithm which also recovers the blocks exactly.
arXiv Detail & Related papers (2023-01-31T19:14:30Z) - Stochastic Differentially Private and Fair Learning [7.971065005161566]
We provide the first differentially private algorithm for fair learning that is guaranteed to converge.
Our framework is flexible enough to permit different fairness, including demographic parity and equalized odds.
Our algorithm can be applied to non-binary classification tasks with multiple (non-binary) sensitive attributes.
arXiv Detail & Related papers (2022-10-17T06:54:57Z) - Communication-Efficient Adam-Type Algorithms for Distributed Data Mining [93.50424502011626]
We propose a class of novel distributed Adam-type algorithms (emphi.e., SketchedAMSGrad) utilizing sketching.
Our new algorithm achieves a fast convergence rate of $O(frac1sqrtnT + frac1(k/d)2 T)$ with the communication cost of $O(k log(d))$ at each iteration.
arXiv Detail & Related papers (2022-10-14T01:42:05Z) - Normalized/Clipped SGD with Perturbation for Differentially Private
Non-Convex Optimization [94.06564567766475]
DP-SGD and DP-NSGD mitigate the risk of large models memorizing sensitive training data.
We show that these two algorithms achieve similar best accuracy while DP-NSGD is comparatively easier to tune than DP-SGD.
arXiv Detail & Related papers (2022-06-27T03:45:02Z) - On Private Online Convex Optimization: Optimal Algorithms in
$\ell_p$-Geometry and High Dimensional Contextual Bandits [9.798304879986604]
We study the Differentially private (DP) convex optimization problem with streaming data sampled from a distribution and arrives sequentially.
We also consider the continual release model where parameters related to private information are updated and released upon each new data, often known as the online algorithms.
Our algorithm achieves in linear time the optimal excess risk when $1pleq 2$ and the state-of-the-art excess risk meeting the non-private lower ones when $2pleqinfty$.
arXiv Detail & Related papers (2022-06-16T12:09:47Z) - Differentially Private Federated Learning via Inexact ADMM [0.0]
Differential privacy (DP) techniques can be applied to the federated learning model to protect data privacy against inference attacks.
We develop a DP inexact alternating direction method of multipliers algorithm that solves a sequence of trust-region subproblems.
Our algorithm reduces the testing error by at most $22%$ compared with the existing DP algorithm, while achieving the same level of data privacy.
arXiv Detail & Related papers (2021-06-11T02:28:07Z) - Learning with User-Level Privacy [61.62978104304273]
We analyze algorithms to solve a range of learning tasks under user-level differential privacy constraints.
Rather than guaranteeing only the privacy of individual samples, user-level DP protects a user's entire contribution.
We derive an algorithm that privately answers a sequence of $K$ adaptively chosen queries with privacy cost proportional to $tau$, and apply it to solve the learning tasks we consider.
arXiv Detail & Related papers (2021-02-23T18:25:13Z) - Private Stochastic Non-Convex Optimization: Adaptive Algorithms and
Tighter Generalization Bounds [72.63031036770425]
We propose differentially private (DP) algorithms for bound non-dimensional optimization.
We demonstrate two popular deep learning methods on the empirical advantages over standard gradient methods.
arXiv Detail & Related papers (2020-06-24T06:01:24Z) - User-Level Privacy-Preserving Federated Learning: Analysis and
Performance Optimization [77.43075255745389]
Federated learning (FL) is capable of preserving private data from mobile terminals (MTs) while training the data into useful models.
From a viewpoint of information theory, it is still possible for a curious server to infer private information from the shared models uploaded by MTs.
We propose a user-level differential privacy (UDP) algorithm by adding artificial noise to the shared models before uploading them to servers.
arXiv Detail & Related papers (2020-02-29T10:13:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.